

Department of Computer Science & Engineering

(With effect from 2022 -23)

ಪಠ್ಯಕ್ರಮ

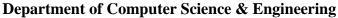
(ಶೈಕ್ಷಣಿಕ ವರ್ಷ 2022-23)

Bachelor Degree In
Computer Science & Engineering

III & IV Semester

Out Come Based Education
With
Choice Based Credit System

[National Education Policy Scheme]


P.E.S. College of Engineering, Mandya - 571 401, Karnataka

[An Autonomous Institution affiliated to VTU, Belagavi, Grant – in – Aid Institution (Government of Karnataka), Accredited by NBA (All UG Programs), NAAC and Approved by AICTE, New Delhi]

> ಪಿ.ಇ.ಎಸ್. ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ ಮಂಡ್ಯ–571 401, ಕರ್ನಾಟಕ (ವಿ.ಟಿ.ಯು, ಬೆಳಗಾವಿ ಅಡಿಯಲ್ಲಿನ ಸ್ವಾಯತ್ತ ಸಂಸ್ಥೆ)

Ph: 08232-220043, Fax: 08232 - 222075, Web: www.pescemandya.org

VISION

"PESCE shall be a leading institution imparting quality Engineering and Management education developing creative and socially responsible professionals."

MISSION

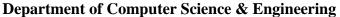
- ➤ Provide state of the art infrastructure, motivate the faculty to be proficient in their field of specialization and adopt best teaching-learning practices.
- Impart engineering and managerial skills through competent and committed faculty using outcome based educational curriculum.
- ➤ Inculcate professional ethics, leadership qualities and entrepreneurial skills to meet the societal needs.
- ➤ Promote research, product development and industry-institution interaction.

QUALITY POLICY

Highly committed in providing quality, concurrent technical education and continuously striving to meet expectations of stake holders.

CORE VALUES

 ${\it Professionalism}$


Empathy

Synergy

Commitment

Ethics

Department of Computer Science and Engineering

The Vision of the department is:

"The Department of Computer Science and Engineering shall create professionally competent and socially responsible engineers capable of working in global environment."

The mission of the department is:

DM1: Enforce best practices in teaching-learning, with dedicated faculty and supportive infrastructure to impart the knowledge in emerging technologies.

{Required to create professionally competent engineers}

DM2: Improve Industry-Institute relationship for mutual benefit.

{Required to create professionally competent engineers}

DM3: Inculcate ethical values, communication and entrepreneurial skills.

{Required to create professionally competent and socially responsible engineers}

DM4: Sensitize social, legal, environmental and cultural diversity issues through professional training and balanced curriculum.

{Required to create engineers capable of working in global environment}

Program Educational Objectives (PEOs)

Graduates of the program shall

- 1. Ability to have Successful computer professional career in IT industry and related areas.
- 2. Pursue higher education in engineering or management with the focus on intensive research and developmental activities.
- 3. Develop their carrier as entrepreneurs in a responsible, professional and ethical manner to serve the society.

The National Board of Accreditation (NBA) has defined twelve Program Outcomes for Under Graduate (UG) engineering programs as listed below.

Program Outcomes (POs)

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of complex engineering problem.
- 2. **Problem analysis**: Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

Department of Computer Science & Engineering

- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess Societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

The Under Graduate (UG) of B.E Computer Science & Engineering Program has defined **Program Specific Outcomes (PSO)** which are listed below.

- **PSO-1:** Ability to apply problem solving skills in developing solutions through fundamentals of Computer Science and Engineering.
- **PSO-2:** Ability to apply Analytical Skills in the field of Data Processing Systems.
- **PSO-3:** Ability to design and develop applications through Software Engineering methodologies and Networking Principles.

	Bachelor of Engineering (III –Semester)									
Sl.		Teaching	Hrs / Weel				Examination Marks			
No.	Course Code	Course Title	department L T P		Credits	CIE	SEE	Total		
1	P21MA301	Transform and Numerical Analysis	MA	2	2	-	3	50	50	100
2	P21CS302	Data Structures	CS	3	-	-	3	50	50	100
3	P21CS303	Computer Organization	CS	3	-	-	3	50	50	100
4	P21CS304	Digital Logic Design	CS	3	-	2	4	50	50	100
5	P21CS305	OOP's with JAVA	CS	3	-	2	4	50	50	100
6	P21CSL306	Data Structures Laboratory	CS	-	-	2	1	50	50	100
	P21KSK307	Samskrutika Kannada /			_					
7	P21KBK307	Balake Kannada	HSMC	-	- 2	-	1	50	50	100
			OR							
	P21CIP307	Constitution of India and Professional Ethics	HSMC	-	2	-	1	50	50	100
8	P21HSMC308	Employability Enhancement Skills - III	HSMC	-	2	-	1	50	50	100
9	P21AEC309	Innovation and Design Thinking	CS	-	2	-	1	50	50	100
Total 21										
10	P21MDIP301	Basic Engineering Mathematics - I	MA	2	2		0	100	ı	100
11	P21HDIP308	Employability Enhancement Skills - I	HSMC	-	2	-	0	100	-	100

		Bachelor of Enginee	ring (IV _Sem	neste	r)					
Sl.		Veek		Exam	ination	Marks				
No.	Course Code	Course Title	Teaching department	L	T	P	Credits	CIE	SEE	Total
1	P21MA401	Applied Mathematical Methods	MA	2	2	-	3	50	50	100
2	P21CS402	Theory of Computation	CS	3	-	-	3	50	50	100
3	P21CS403	Analysis & Design of Algorithms	CS	3	-	-	3	50	50	100
4	P21CS404	Database Management System	CS	3	-	2	4	50	50	100
5	P21CS405	AVR Micro Controller	CS	3	-	2	4	50	50	100
6	P21CSL406	Analysis & Design of Algorithms Laboratory	CS	-	-	2	1	50	50	100
	P21KSK407	Samskrutika Kannada /			2					
7	P21KBK407	Balake Kannada	HSMC	-	2	-	1	50	50	100
			OR						•	
	P21CIP407	Constitution of India and Professional Ethics	HSMC	-	2	-	1	50	50	100
8	P21HSMC408	Employability Enhancement Skills - IV	HSMC	-	2	-	1	50	50	100
9	P21INT409	Internship – I	CS	-	2	-	1	50	50	100
		Total					21			
10	P21MDIP401	Basic Engineering Mathematics - II	MA	2	2	-	0	100	-	100
11	P21HDIP408	Employability Enhancement Skills – II	HSMC	-	2	-]	0	100	-	100

Department of Computer Science & Engineering

TRANSFORM AND NUMERICAL ANALYSIS

[As per Choice Based Credit System (CBCS) & OBE Scheme]

SEMESTER – III

Course Code:	P21MA301	Credits:	03
Teaching Hours/Week (L:T:P):	2-2-0	CIE Marks:	50
Total Number of Teaching Hours:	40	SEE Marks:	50

Course Learning Objectives:

- Adequate exposure to basics of engineering mathematics so as to enable them to visualize the applications to engineering problems
- Analyze periodic phenomena using concept of Fourier series, series solution of Engineering problems
- Understand Fourier transforms of functions and use it to solve initial value, boundary value problems.
- Apply Z-Transform technique to Solve difference equations and Numerical Technique to estimate interpolation, Extrapolation and area - (All formulae without proof)problems only
- Use mathematical IT tools to analyze and visualize the above concepts.

UNIT – I 8 Hours

Fourier Series: Introduction, periodic function, even and odd functions, properties. Special waveforms - square wave, half wave rectifier, saw-tooth wave and triangular wave. Dirichlet's conditions, Euler's formula for Fourier series (no proof). F urier series for functions of period 2L (all particular cases) — problems, Half Range Fourier series-Construction of Half range cosine and sine series and problems Practical harmonic analysis-Illustrative examples from engineering field.

Self-study component:	Derive Euler's formula, Fourier series in complex form.	
	UNIT – II	8 Hours

Partial differential equations (PDE's):

Formation of PDE's. Solution of non-homogeneous PDE by direct integration. Solutions of homogeneous PDE involving derivative with respect to one independent variable only, Method of separation of variables (first and second order equations).

Applications of PDE's: Various Possible solution of PDE's

Classification of second order PDE, various possible solutions for One- dimensional wave and heat equations, by the method of separation of variables. Solution of all these equations with specified boundary conditions (Boundary value problems). Illustrative examples from engineering field.

	UNIT – III	8 Hours
component:	Two dimensional Laplace equation.	
Self-study	Charpit's Method -simple problem. Various possible so	lutions of

Finite Differences and Interpolation: Forward and backward differences, Interpolation, Newton-Gregory forward and backward interpolation formulae, Lagrange's interpolation formula and Newton's divided difference interpolation formula (All formulae without proof)-problems only.

Department of Computer Science & Engineering

Numerical Differentiation: Derivatives using Newton-Gregory forward and backward interpolation formulae, Applications to Maxima and Minima of atabulated function.

Numerical Integration: Newton-Cotes quadrature formula, Simpson's 1/3rd rule and Simpson's 3/8 th rule. Weddle's rule (All rules without proof)-								
Self-study component: Inverse Lagrange's Interpolation formula, Central differences.								
UNIT – IV 8 Hours								
Fourier Transforms:	Infinite Fourier transforms. Properties- linearity, scaling,	, shifting and						
` • ′), Fourier sine and cosine transforms. Inverse Fourier and sine transforms. Problems. Convolution theorem arblems.	•						
Self-study component:	Finite Fourier transform, Fourier transform of derivative functions	ves of						
UNIT – V 8 Hours								
Properties-linearity, scinitial and final value the Difference Equation	efinition. Z-transforms of basic sequences and standard laling, Damping rule, first and second shifting, multiple heorem (statement only)-problems. Inverse Z- transforms-us: Definition. Formation of Difference equations, fference equations with constant coefficients-problems, sing Z- transforms.	ication by <i>n</i> , problems. Linear &						
Self-study component:	Convolution theorem and problems, Application to defl loaded string.	ection of a						
Course Outcomes: On	completion of the course, student should be able to:							
Transforms and B	CO1 Analyze engineering problems using the fundamental concepts in Fourier series, Fourier Transforms and Basics ideas of PDE's.							
	methods to find the Fourier constants, solution of PDE's,							
~~~	erpolation and find the area, solution of difference equations.							
rippiy the acquire	ed knowledge to construct the Half-range Fourier series, Fiverse Laplace transforms for some standard functions.	nding Fourier						

CO4 Evaluate Z-transform of various functions, solutions of differential equations with initial

and boundary conditions.





**Department of Computer Science & Engineering** 

# **TEXT BOOKS**

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016.

#### REFERENCE BOOKS

- 1. V. Ramana: Higher Engineering Mathematics, McGraw –Hill Education, 11th Ed..
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International Publishing House Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

#### **ONLINE RESOURCES**

- 1. <a href="http://www.nptel.ac.in">http://www.nptel.ac.in</a>
- 2. <a href="https://en.wikipedia.org">https://en.wikipedia.org</a>
- 3. <a href="https://ocw.mit.edu/courses/18-085-computational-science-and-engineering-i-fall-2008/resources/lecture-28-">https://ocw.mit.edu/courses/18-085-computational-science-and-engineering-i-fall-2008/resources/lecture-28-</a> <a href="mailto:fourier-series-part-1/">fourier-series-part-1/</a>
- 4. https://www.thefouriertransform.com/
- 5. <a href="http://mcatutorials.com/mca-tutorials-numerical-methods-tutorial.php">http://mcatutorials.com/mca-tutorials-numerical-methods-tutorial.php</a>

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	2	3										
CO3	3	2										
CO4	2	3										

Strength of correlation: Low-1, Medium- 2, High-3





# Department of Computer Science & Engineering

	DATA STRUCTUR	ES						
[As per Choice Ba	ased Credit System (CB	CS) & OBE Scheme]						
	<b>SEMESTER - III</b>							
Course Code: P21CS302 Credits: 03								
Teaching Hours/Week (L:T:P):	3:0:0	CIE Marks:	50					
<b>Total Number of Teaching Hours:</b>	Total Number of Teaching Hours: 40 SEE Marks: 50							
Course Learning Objectives:								
<ul> <li>To become familiar with the co</li> </ul>	ncent of pointers and	its usage in data structure						

To become familiar	with the concept of pointers and its usage in data structur	e.							
• To study and understand the representation and implementation of linear & non-linear data									
structures.	structures.								
<ul> <li>To identify the appr</li> </ul>	ropriate data structure while solving real-time applications	S							
UNIT – I		8 Hours							
Pointers: Review of point	ters, Pointers and arrays, Arrays of pointers.								
Structures: Arrays of Stru	ctures, Structures and Functions- Passing Individual Mem	bers, Passing the							
Entire Structure, Passing S	tructures through Pointers, Self-referential Structures.								
<b>Introduction:</b> Basic Term	ninology-Elementary Data Structure Organization, Class	ification of Data							
Structures, Operations on I	Data Structures, Abstract Data Type.								
Dynamic memory Allocat	tion								
Self-study component:	Examples of Abstract Data Type								
	Static v/s Dynamic memory allocation								
	Pointers and Two-dimensional Arrays								
UNIT – II		8 Hours							
Linked Lists: Introductio	n, Operations on lists, Singly linked lists, Circular link	ked lists, Doubly							
linked lists, Applications o	f linked lists - Polynomial Representation, Evaluation of p	oolynomials							
Self-study component:	Doubly circular linked lists, Header linked list								
UNIT – III		8 Hours							
Stacks: Introduction to Sta	acks, Operations on a Stack (Using Arrays & Linked list)	, Applications of							
Stacks: Implementing Pare	entheses Checker, Conversion of Expression: infix to p	ostfix, Postfix to							
Prefix, Evaluation of Expre	essions: prefix expression, postfix expression.								
<b>Self-study component:</b>	Multiple stacks								
	Conversion of Expressions: infix to prefix, Prefix to	postfix, prefix to							
	infix, Postfix to infix								
UNIT – IV		8 Hours							
	Factorial of a number, Fibonacci series, Tower of Hanoi, C	GCD of two							
numbers.									
Queues: Introduction to Queues, Operations on Queue (Using Arrays & Linked list).  Types of Queues: Circular queue, DeQues, Priority Queue, Multiple Queues									
· -		y Soorah)							
Self-study component:	Types of recursion with examples (Linear Search, Binary	y Scarcii)							
Applications of Queues: Josephus Problem									
UNIT – V		8 Hours							
<b>Trees:</b> Introduction, Basic	Terminology, Types of Trees, Traversing a Binary Tree	, Applications of							

Trees, Binary Search Trees, Operations on Binary Search Trees, Threaded Binary Trees.

Huffman tree, Expression Trees.

**Self-study component:** 





# **Department of Computer Science & Engineering**

COs	Course Outcomes with Action verb for the Course topics
CO1	Apply the concepts of pointers in data structures.
CO2	Analyze and represent various data structures and its operations.
CO3	<b>Design</b> algorithms using different data structures like List, Stack, Queue and Trees.
CO4	<b>Develop</b> programs with suitable data structure based on the requirements of the real-time
	applications.

# **Text Book(s):**

• ReemaThareja, "Data Structures using C", 2nd Edition, 2018, Oxford University Press

# **Reference Book(s):**

- Aaron M Tenenbaum, Yedidyah Langsam and Moshe J Augenstein, "Data Structures using C", 2014, low price edition, Pearson education,.
- <u>Seymour Lipschutz</u>, "Data Structures with C (Schaum's Outline Series)", July 2017, McGraw Hill Education

# Web and Video link(s):

• Data Structures and algorithms offered by NPTEL: <a href="https://nptel.ac.in/courses/106102064/">https://nptel.ac.in/courses/106102064/</a>

## E-Books/Resources:

https://www.academia.edu/28758384/

# **CO-PO Mapping**

CO	Statement	PO	PSO	PSO	PSO											
	Statement	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	<b>Apply</b> the concepts of pointers in data structures.	3												2		
CO2	Analyze and represent various data structures and its operations.	2	3											2		
CO3	DesignalgorithmsusingdifferentdatastructureslikeList,Stack,QueueandTrees.	2	3	3										2		
CO4	<b>Develop</b> programs with suitable data structure based on the requirements of the real-time applications.	1	1	2									1	2		





# **Department of Computer Science & Engineering**

COMPUTER ORGANIZATION									
[As per Choice Based Credit System (CBCS) & OBE Scheme]									
	SEMESTER – III								
Course Code:	P21CS303	Credits:	03						
Teaching Hours/Week (L:T:P): 3:0:0 CIE Marks: 50									
Total Number of Teaching Hours: 40 SEE Marks: 50									
	ı		1						

# **Course Learning Objectives:**

- Conceptualize the basics of Organizational issues of a digital computer and compare the performance of machine instruction.
- Expose different ways of communication with I/O Devices.
- Notice how to perform computer arithmetic operation.
- Understand working of processing unit using different bus structures.
- Illustrate different Types of memory devices with their principles.

• Inusu	aic different	Types of memory devices with their principles.						
UNIT – I			8 Hours					
BASIC STR	UCTURE O	F COMPUTERS: Basic operational Concepts, Performance.						
INSTRUCT	ION SET	ARCHITECTURE: Memory Location and Addresses	, Memory					
Operations, I	nstruction and	I Instruction Sequencing, Addressing Modes, Assembly Langu	iage.					
Self-study co	<b>Self-study component:</b> Functional Units of Computer, Number Representation and Arithmetic Operations, Character representation.							
UNIT – II		operations, enactions representations	8 Hours					
INSTRUCT	ION SET AR	CHITECTURE (Continued): Subroutines, Additional instru	ctions.					
<b>BASIC INPUT/OUTPUT:</b> Accessing I/O Devices- I/O Device Interface, Program Controlled I/O, Interrupts-Enabling and Disabling Interrupts, Handling Multiple Devices, Exceptions. <b>INPUT/OUTPUT ORGANIZATION</b> : Bus Structure, Bus Operation -Synchronous Bus, Asynchronous Bus, Arbitration.								
Self-study co	omponent:	Stacks, Interface Circuits.						
UNIT – III			8 Hours					
	SYSTEM: Barries – Mappir	asic Concepts, Semiconductor RAM Memories, Memory Higher Functions.	erarchy, and					
Self-study co	omponent:	Read Only Memories, Direct Memory Access						
UNIT – IV			8 Hours					
		UNIT: Some Fundamental Concepts, Instruction Execution etch and Execution Steps, Control Signals, Hardwired Control	*					
Self-study co	omponent:	CISC Style Processors.						
UNIT – V			8 Hours					
ARITHMET	TIC: Multipli	cation of Signed Numbers, Fast Multiplication-Bit Pair F	Recoding of					
Multipliers, Carry-Save Addition of Summands, Integer Division, Introduction to Floating point Numbers and Operations.								
Self-study co	omponent:	Design of Fast Adders, Multiplication of Unsigned numbers.						





# **Department of Computer Science & Engineering**

Course Outcomes: On completion of this course, students are able to:							
COs	Course Outcomes with Action verbs for the Course topics.						
CO1	1 Understand the operation and organization of a digital computer system.						
CO2	<b>Apply</b> the knowledge of assembly language / algorithmic techniques to solve the given problem.						
CO3	Analyze the given assembly language code snippet.						
CO4	<b>Design</b> memory modules.						

#### **Text Book(s):**

1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer Organization and Embedded Systems, 6th Edition, Tata McGraw Hill.

#### **Reference Book(s):**

- 1. Computer Organization & Architecture, William Stallings, 9th Edition, PHI, 2013.
- 2. Computer Systems Design and Architecture, Vincent P. Heuring& Harry F. Jordan, 2nd Ed. Pearson Education, 2004.

# Web and Video link(s):

- 1. https://nptel.ac.in/courses/106/103/106103068/
- 2. https://nptel.ac.in/content/storage2/courses/106103068/pdf/coa.pdf
- 3. https://nptel.ac.in/courses/106/105/106105163/
- 4. https://nptel.ac.in/courses/106/106/106106092/
- 5. <a href="https://nptel.ac.in/courses/106/106/106106166/">https://nptel.ac.in/courses/106/106/106106166/</a>
- 6. http://www.nptelvideos.in/2012/11/computer-organization.html

# **CO-PO Mapping**

СО	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	Understand the operation and organization of a digital computer system.	2														
CO2	Apply the knowledge of assembly language / algorithmic techniques to solve the given problem.	2	2	1										1		
CO3	Analyze the given assembly language code snippet.	2	2	1										1		
CO4	<b>Design</b> memory modules.	2	2	2										2		





# **Department of Computer Science & Engineering**

DIGITAL LOGIC DESIGN [As per Choice Based Credit System (CBCS) & OBE Scheme]							
SEMESTER – III							
Course Code:	Credits:	04					
Teaching Hours/Week (L:T:P):	3:0:2	CIE Marks:	50				
<b>Total Theory Teaching Hours:</b>	40	SEE Marks:	50				
<b>Total Laboratory Hours:</b>	24						

**Course Learning Objectives:** This course will enable the students to:

- Understand Boolean laws and minimization techniques and fundamental gates
- Design of combinational logic circuits using minimum number of gates, Decoders and Multiplexers
- Understand the Sequential logic components and Design of sequential circuits
- Understand and use high-level hardware description languages (VHDL ) to design combinational / sequential circuits
- Conduct and Simulate practical experiments of combinational and sequential circuit

UNIT – I	Boolean Algebra and minimization of switching functions	8 Hours

**Boolean Algebra :** Introduction, Logic gates , Boolean Laws, Duality, Boolean expression in standard SOP and POS , Realization using basic gates and universal gates.

**Minimization Of Switching Functions:** Introduction, K-Map: Two-variable, Three-variable and Four-variable K-map, Don't care combinations, Map entered variable(VEM), Limitation of K-map, Code converters: Binary to gray, BCD to Excess 3, Quine-Mc-Clusky method- 3 variable

Self-study con	mponent:	Quine-Mc-Clusky method- 4,5 variable					
Practical Top	Verify the truth table for different logic gates using IC's	s					
(6 Hours)		<ol> <li>A committee of three individuals decides issues for an organization. Each individual votes either yes or no for each proposal that arises. A proposal is passed if it receives at least two yes votes. Design a circuit using minimum number of NAND gates only that determines whether a proposal passes.</li> <li>Design Logic circuit to convert 3 bit binary to gray code using basic gates.</li> </ol>					
UNIT – II		Combinational Logic Design	8 Hours				

Introduction to combinational circuits, Adders, Subtractors, ripple carry adder, Look ahead carry adder, Comparators:1-bit and 2bit magnitude comparator, Encoders: octal to Binary and Decimal to BCD encoder, Priority encoders, Decoders: 2 to 4, 3 to 8 line decoder, Multiplexers: 2:1,4:1, 8:1,16:1, Design combinational circuits using Decoders and Multiplexers

<b>Self-study component:</b>	7 Segment Decoder, Demultiplexer							
<b>Practical Topics:</b>	1. Design Full adder using suitable Decoder							
(6 Hours)	2. A lawn sprinkling system is controlled automatically by certain combinations of the following variables.  Season(S=1,if summer; 0, otherwise)							





		Moisture content of soil(M=1,if high;0 if low)						
Outside temperature(T=1, if high;0 if low)								
		Outside humidity(H=1,if high;0 if low)						
The sprinkler is turned on under any of the following circumstances:								
		i. The moisture content is low in winter.						
		ii. The temperature is high and the moisture content is						
		iii. The temperature is high and the humidity is high in iv. The temperature is low and the moisture content is l						
		v. The temperature is flow and the moisture content is i	ow in summer.					
		Implement using suitable multiplexer.(use 8x1 mux)	)					
UNIT – III		Flip flops	8 Hours					
Introduction,	Classificati	on of sequential circuits: Asynchronous and Synchronous	ous, NAND and					
NOR latches	and flip flo	ps: Excitation tables, State diagram and Characteristic equ	ation of SR, JK,					
Race around	condition,	Master slave JK flip flops, , Excitation tables, Sta	te diagram and					
Characteristic	equation of	f D and T flip flops, Conversion of SR to JK, JK to D, T t	o D Flip flops					
Self-study con	mponent:	Conversion of JK to SR, D to JK and D to T Flip flop	S					
Practical Top	oics:	Verify the truth table of JK and D Flip Flops						
(4 Hours)		1. Implement Master slave D Flip Flop using only NAND Gates						
		2. Design and demonstrate the conversion of JK flip flop to T Flip						
		Flop						
UNIT – IV		Shift Registers and Counters	8 Hours					
Parallel Out Register, <b>Desi</b> Counter, John	Shift Registign of shift ason Counter		arallel Out Shift it Registers: Ring					
•		and Asynchronous Introduction, Design counters using J						
Self-study con	mponent:	Effects of propagation delay in ripple counters, Sequence	e detector design					
Practical Top	oics:	1. Design and demonstrate 3-bit serial in serial o using D Flip Flop's	ut shift register					
(4 Hours)		2. Design and demonstrate 2-bit synchronous count	ter for the given					
		sequence using JK Flip Flop.	ier for the given					
UNIT – V		Introduction to VHDL	8 Hours					
Hardware description languages, VHDL description of combinational circuits, VHDL models for multiplexers, VHDL modules, Sequential statements and VHDL processes, Modeling Flip-flops using VHDL Processes, VHDL Modeling registers and counters using VHDL processes								
Self-study con	mponent:	Compilation, simulation and synthesis of VHDL code, examples.	Simple synthesis					
Practical Top	oics:	Write the VHDL code for basic gates and verify its working						
(4 Hours)  1. Write the VHDL code for 8:1 Mux .Simulate and verify it's working.								





# **Department of Computer Science & Engineering**

NOTI	D.	<ol> <li>Write the VHDL code for JK and D flip-flop. Simulate and verify its working.</li> <li>Write the VHDL code for 3- bit synchronous down counter. Simulate and verify its working.</li> </ol> These experiments are for Practice					
11011	עו	Practical Topics will be changed every academic year					
Cours	se Outcomes: On c	ompletion of this course, students are able to:					
COs	S Course Outcomes with Action verbs for the Course topics						
CO1	Apply Boolean Algebra/ K Map and knowledge of fundamental gates in minimizing Logic function						
CO2	Analyze Combina	ational and Sequential circuits					
CO3	Design Combinational /Sequential logic circuit for the given problem						
CO4	Develop VHDL code for Combinational / Sequential logic circuit						
CO5	Conduct and Simulate practical experiments for demonstrating the working of Combinational and Sequential circuit both with component realization and VHDL code						

# **Text Book(s):**

- 1. A. Anand Kumar, Fundamentals of Digital Circuits,4th Edition, PHI Learning, ISBN: 9788120352681,Nov- 2016
- 2. Charles H.Roth, Jr., Lizy Kurian John, Digital Systems Design using VHDL,2nd Edition, CENGAGE Learning,2012

#### **Reference Book(s):**

- 1. M.Morris Mano, Michael D.Ciletti, Digital Design with an introduction to the verilog HDL, VHDL and systemverilog,6th edition, Pearson Publication,2020
- 2. Donald P Leach, Albert Paul Malvino, Goutam Saha, Digital Principles and applications,8th edition, McGraw-Hill Education,2017

#### Web and Video link(s):

1. https://nesoacademy.org/ec/05-digital-electronics

#### E-Books/Resources:

- 1. https://dvikan.no/ntnu-studentserver/kompendier/digital-systems-design.pdf
- 2. https://drive.google.com/file/d/11w9LhePHIhwBljiWSXrmEJgXj5RE05j4/view?usp=sharing





# **CO-PO Mapping**

CO	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	Apply Boolean Algebra / K Map and knowledge of fundamental gates in minimizing Logic function	3	_					-						1		
CO2	Analyze Combinational and Sequential circuits	1	3	1										1		
CO3	<b>Design</b> combinational /sequential logic circuit for the given problem	1	2	3										1		1
CO4	Implement Combinational/ Sequential logic circuit using VHDL code	1	1	2										1		
CO5	Conduct and Simulate practical experiments for demonstrating the working of combinational and sequential circuit both with component realization and VHDL code	1	1	2	1	2				2				1		





# **Department of Computer Science & Engineering**

# **OBJECT ORIENTED PROGRAMMING WITH JAVA (Integrated)**

[As per Choice Based Credit System (CBCS) & OBE Scheme]

# SEMESTER - III

Course Code:	P21CS305	Credits:	4
Teaching Hours/Week (L:T:P):	3:0:2	CIE Marks:	50
<b>Total Theory Teaching Hours:</b>	40	SEE Marks:	50
Total Laboratory Hours:	24		

Course Learning Objectives: The students will be able to

- Understand fundamentals of Object Oriented Concepts.
- Explore the features of Object-oriented Programming in Java for defining classes, methods and invoking methods.
- Write program in Java to solve specified problems.

UNIT – I		8 Hours
----------	--	---------

**Object Oriented Concepts:** Fundamentals of Object Oriented programming - Object oriented paradigm, basics concepts of object oriented programming, benefits of object oriented programming, applications of object oriented programming.

**JAVA Basics:** JVM architecture. The scope and life time of variables, control statements, type conversion and casting, simple java programs.

Self-study	Data types and operators	
component:		
<b>Practical Topics:</b>	1. Write a program to find the sum of the series $1 + 1/2$	(2*2) + 1/(3*3) +
_	$1/(4*4) + \dots + 1/(n*n).$	
(6 Hours)	2. Write a Java program for printing Pascals's Triangle (5	rows) using nested
	loops.	
	3. Write a program that accepts three numbers from t "increasing" if the numbers are in increasing order, numbers are in decreasing order, and "Neither increasing order" otherwise.	"decreasing" if the
UNIT – II		8 Hours

Classes, Objects and Methods: Class Fundamentals, How objects are created, Reference variables, methods, Returning from a method returning, Returning a value, Constructors, Parameterized constructors, this keyword, Java access modifiers, Passing objects to methods, How augment are passed, Returning Objects, Method overloading, Overloading constructors, Static-variables, methods and blocks, Nested and Inner class, Variable length arguments basics.

Self-study	Arrays
component:	
<b>Practical Topics:</b>	1. Create a Java class called Complex with the following details and
	variables within it as (i) Real (ii) Imaginary
(6 Hours)	Develop a Java program to perform addition and subtraction of two complex
	numbers by using the method add() and subtract() respectively by passing
	object as parameter and display result using method display(). Initialize the
	real and imaginary values of the complex number using parameterized
	constructor.





	2. A class called MyTime, which models a time instance with instance variables: hour: between 0 to 23, minute: between constructor shall invoke the setTime() method to set the instance (setTime(int hour, int minute): It shall check if the given he are valid before setting the instance variables). define methods - getHour(), getMinute(), nextMinute()Update this instance to the next minute and retake note that the nextMinute() of 23:59 is 00:00 nextHour() is similar to the above.  Write the code for the MyTime class. Also write a test progressing the methods defined in the MyTime.	o to 59, stance variable our and minute turn this instance.
UNIT – III		8 Hours
Inheritance: Inherit	ance basics, Member access and inheritance, Constructors and	Inheritance,
Using super to call s	uper class constructor, Using super to access super class members	bers, Creating a
multilevel hierarchy	, Execution of constructors, Super class reference and Subclas	ss objects,
Method overriding,	Abstract class.	
Self-study	Using final	
component:		
Practical Topics:	1. Assume that a bank maintains two kinds of accounts f	or customers, one
•	called as savings account and the other as current account	ınt. Create a class
(4 Hours)	Account that stores customer name, account number and	d type of account.
	From this derive the classes Curr-acct and Sav-acct to	make them more
	specific to their requirements. The savings account pr	rovides compound
	interest and withdrawal facilities. The current account	-
	interest. Current account holders should also maintain a	•
	(Rs 5000) and if the balance falls below this level, a service	ce charge (Rs 100)
	is imposed. Include the necessary methods in order to ach	
	tasks:	$\mathcal{E}$
	☐ Accept deposit from customer and update the balance	ce.
	☐ Display the balance.	
	☐ Compute and deposit interest	
	☐ Permit withdrawal and update the balance	
	☐ Check for the minimum balance (only for Current	t account), impose
	penalty if necessary and update the balance.	// I
	2. Design a base class Circle with member variables (radius	of type double and
	color of type character), methods (getRadius(), getArea())	• •
	(Circle(radius), Circle(radius, color)).	
	Derive subclass called Cylinder from the super class Ci	ircle with member
	variable (height) of type double, public methods (getHeig	
	getArea())	and
	constructors(Cylinder(height),Cylinder(height,radius),Cyl	
	radius, color)). Create the two instances of cylinder	
	cylinders if the area, volume and color of cylinders are sar	-





# **Department of Computer Science & Engineering**

Demonstrate the code reuse and polymorphism properties of Object oriented
programming by inheriting the constructors and methods of the base class.
Derive subclass called Cylinder from the superclass Circle with member
variable (height) of type double, public methods (getHeight(), getVolume(),
getArea()) and its constructors(Cylinder(height, radius), Cylinder(height,
radius,color)). Create the two instances of cylinder and print similar
cylinders if the area, volume and color of cylinders are same. Demonstrate
the code reuse and polymorphism properties of Object oriented
programming by inheriting the constructors and methods of the base class.

UNIT – IV 8 Hours

**Interface**: Interface fundamentals, Creating an interface, Implementing an interface, Using interface references

Packages: Fundamentals of packages, Packages and member access, Importing packages.

Multithreaded Programming: The Java thread model, Creating a thread, Creating multiple

threads, Using isalive() and Join(), Thread priorities.

Self-study	Constants in Interfaces, Nested Interfaces
component:	
<b>Practical Topics:</b>	1. Create two classes called HDFCAccount and StateBankAccount. that
(4 Hours)	implements all the methods defined in interface Account. Declare the methods getBalance, deposit and withdraw in Account interface. HDFCAccount uses member variables deposits and withdrawals for maintaining the balance, where as State BankAccount uses only balance to maintain the balance. In the main method create objects of HDFCAccount and StateBankAccount, but assigned them to the reference of the interface Account. Also write an method to print balance in main which prints the balance amount.
	2. Create a package CIE which has two classes- Student and Internals. The class Student has members like usn, name, sem. The class internals has an array that stores the internal marks scored in six courses of the current semester of the student. Create another package SEE which has the class External which is a derived class of Student. This class has an array that stores the SEE marks scored in six courses of the current semester of the student. Import the two packages in a file that declares the final marks of N students in all six courses.
	3. Write a java program that implements a multi-thread application that has three threads. First thread generates random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number





# **Department of Computer Science & Engineering**

			T								
UN	$\mathbf{VIT} - \mathbf{V}$		8 Hours								
Except	ion handling	Fundamentals, Exception hierarchy, uncaught exceptions, uncaught excepti	using try and catch,								
multipl	multiple catch clauses, throw, finally, Java's built-in exceptions.										
Generics: generic fundamentals, bounded types, generic methods, generic constructors, generic											
class hi	erarchies.										
Self-stu	•	Generic interfaces, throws									
compo	nent:										
Practio	cal Topics:	1. Write a java program to handle the following exceptions made by the user by writing suitable try and catch block									
(4 Hou	ma)	i) ArithmeticException	•								
(4 110u	15)	ii) ArrayIndexOutOfBoundsException									
		iii) NumberFormatException									
		· •									
		<ul><li>iv) StringIndexOutOfBoundException</li><li>v) NullPointerException</li></ul>									
		•									
		2. Define a class Sort with generic method by name Arrange(T[]) and									
		Display(T[]). Write a program to sort array elements of different data types.									
Course	Outcomes:	On completion of this course, students are able to:									
COs	Course Out	tcomes with Action verbs for the Course topics.									
CO1	Understand	and explore the fundamental concepts of object oriented pro	ogramming language								
CO2	<b>Apply</b> the s	yntax and semantics of java for solving a given problem.									
CO3	Analyze the	given Java code snippet to identify the bugs and correct the	code.								
CO4 Conduct experiments using IDE to demonstrate the features of Java programming langua											
Text B	ook(s):										
	` '	ldt and Dale Skrien, "Java Fundamentals – A comprehensive	Introduction",								
		l, 1 st Edition, 2013.	,								
		g with Java A Primer E. BalaGuruSwamy 5th Edition McGra	w Hill Education								

 Programming with Java A Primer E. BalaGuruSwamy 5th Edition McGraw Hill Education 2014

# **Reference Book(s):**

- 1. The Complete Reference Java , Herbert Schildt , 11th Edition , 2019, McGraw Hill Education Publications.Core Java
- 2. Core Java Vol 1, Cay S Horstmann, Gary Cornell 11th Edition Prentice Hall. 2018.

#### E-Books/Resources:

- **1.** Java Programming Wikibooks Contributors Seventh Edition wikibooks.org 2016 URL: <a href="https://upload.wikimedia.org/wikipedia/commons/e/e7/Java_Programming.pdf">https://upload.wikimedia.org/wikipedia/commons/e/e7/Java_Programming.pdf</a>
- **2.** Java Programming, Wikibooks Contributors, Seventh Edition, wikibooks.org 2016, URL <a href="https://upload.wikimedia.org/wikipedia/commons/e/e7/Java_Programming.pdf">https://upload.wikimedia.org/wikipedia/commons/e/e7/Java_Programming.pdf</a>





# **CO-PO Mapping**

СО	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	Understand and explore the fundamental concepts of object oriented programming language.	2														
CO2	<b>Apply</b> the syntax and semantics of java for solving a given problem.	2	2	2										1		
CO3	Analyzethe given Java code snippet to identify the bugs and write correct code.	2	2	1										1		
CO4	Conduct experiments using IDE to demonstrate the features of Java programming language.	2	2	2		2				1			1	1		





		. C T. 1											
		ita Structures Lab	oratory CBCS) & OBE Scheme	اد									
	[As per enoice bas	SEMESTER –		×1									
Cour	se Code:	P21CSL306	Credits:	01									
Teac	hing Hours/Week (L:T:P):	0:0:2	CIE Marks:	50									
Total	Number of Lab Hours:	24	SEE Marks:	50									
Note	: All programs are to be impleme	nted using C Lang	ıage										
1.	Create a structure <b>DISTAN</b>	NCE with data m	embers kms and meter	ers of type integer.									
	Implement a program to perform addition and subtraction on two distances by passing pointer to a structure to function.												
2.													
	1. Create SLL of 'n' intege	ers(insert front/rear	)										
	2. Delete the specified inte	ger from the list wi	th appropriate message										
	3. Display the contents of t	he list.											
3.	Implement a menu driven Progr	am in C for the fol	lowing operations on D	oubly Linked List									
	(DLL) of Library Data with the	fields: BOOK_ID	, BOOK_TITLE, AUTI	HOR, EDITION									
	1. Create an ordered DLL of												
	2. Count the number of noo												
	3. Delete a node at the spec	<del>-</del>											
4.	4. Display the contents of l												
<del>4</del> . 5.	Implement a program to add tw		a an austions on CTAC	V of Internal (Amor)									
3.	Implement a menu driven Progr Implementation of Stack with n		= =	K of fillegers (Afray									
	1. Push an Element on to												
	<ol> <li>Push an Element from S</li> </ol>	,	•										
	<ul><li>3. Display the status of St</li></ul>		tuation of underflow)										
	Support the program with appro		r each of the above one	rations									
6.	Implement a Program to conver	<u>-                                      </u>		lations									
7.	Implement the following using	<b>.</b>	.pr • ssrom										
	1. Tower_of_Hanoi												
	2. GCD of two numbers												
	3. Largest of 'n' numbers	3											
8.	Implement a menu driven Progr		ng operations on QUEU	ES of Strings using									
	Linked list												
	1. Insert an Element into	-											
	2. Delete an Element from	-											
0	3. Display the status of Q		• •.										
9.	Implement a program to perform			G 1. E 225									
10.	Implement a menu driven Progr	am for the following	ng operations on Binary	Search Tree (BST)									
	of Integers  1. Create a BST of N Integers	opers											
	2. Traverse the BST in In	_	d Postorder										
	2. 11a, cibe die Bb i ili ili	ioraci, rreoraci an	<u> </u>										





# **CO-PO Mapping**

CO	Statement	PO	<b>PSO</b>	PSO	<b>PSO</b>											
			2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Design algorithms using	2	2	2										2		
	different data structures															
	like List, Stack, Queue															
	and Trees.															
CO2	Develop programs with	2	2	2									1	2		
	suitable data structure															
	based on the															
	requirements of the real-															
	time applications.															





# **Department of Computer Science & Engineering**

# **Employability Enhancement Skills (EES) - III**

# [As per Choice Based Credit System (CBCS) & OBE Scheme]

# SEMESTER – III

Course Code:	P21HSMC308	Credits:	01
Teaching Hours/Week (L:T:P):	0:2:0	CIE Marks:	50
<b>Total Number of Teaching Hours:</b>	28	SEE Marks:	50

**Course Learning Objectives:** This course will enable students to:

- Build Personal Branding, team binding.
- Present the data using presentation skills in a better manner.
- Understand the importance of stress management, Entrepreneurship & Business skills.
- Usage of various voices in a sentence and critical reasoning.
- Explain the basic concepts in boat and stream, geometry and trigonometry problems.
- Calculations involving Permutations and combinations, probability and logarithms.
- Explain concepts behind logical reasoning modules of analytic, syllogisms, venn diagrams and puzzles.

UNIT – I 8 Hours

**Soft Skills:** Personal Branding, Synergy between Teams (Online and Offline), Interview skills, Stress Management, Entrepreneurship & Business skills.

Verbal Ability: Active voice and passive voice, critical reasoning.

**Self-Study:** Corporate ethics and Mannerism

UNIT - II

10 Hours

**Quantitative Aptitude:** Boats and streams, Geometry & Trigonometry, Permutations and combinations, Probability & Logarithms.

**Self-Study:** Pipes and cisterns

UNIT – III

10 Hours

Logical Reasoning: Analytical reasoning, Syllogisms, clocks and calendars, Venn diagram, puzzles.

**Self-Study:** Binary logic





# **Department of Computer Science & Engineering**

Course Ou	Course Outcomes: On completion of this course, students are able to:											
CO – 1:	Exhibit amplified level of confidence to express themselves in English											
CO – 2:	Develop the presentation skills, entrepreneurial skills by managing stress at various levels.											
CO – 3:	Solve the problems based on Boats and streams, Geometry & Trigonometry, Permutations and combinations, Probability & Logarithms.											
CO – 4:	Solve logical reasoning problems based on Analytical reasoning, Syllogisms, clocks and calendars, cases and Venn diagram, puzzles.											

# **Text Book(s):**

- 1. Word Power Made Easy New Revised and Expanded Edition, First Edition, Norman Lewis, Goyal Publisher.
- 2. Essential English Grammar by Raymond Murphy, Cambridge University Press, new edition
- 3. The 7 habits of Highly Effective People by Stephen R. Covey
- 4. Quantitative aptitude by Dr. R. S Agarwal, published by S.Chand private limited.
- 5. Verbal reasoning by Dr. R. S Agarwal, published by S. Chand private limited.

#### **Reference Book(s):**

- 1. Quantitative Aptitude by Arun Sharma, McGraw Hill Education Pvt Ltd
- 1. 2. CAT Mathematics by Abhijith Guha, PHI learning private limited.

#### Web and Video link(s):

1. NPTEL Course: Soft skills by By Prof. Binod Mishra, IIT Roorkee

https://onlinecourses.nptel.ac.in/noc21_hs76/preview

	COURSE ARTICULATION MATRIX [Employability Enhancement Skills (EES) - III]														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO-1	-	-	-	-	-	-	-	-	2	3	-	2			
CO-2	-	-	-	-	-	-	-	-	2	3	2	2			
CO-3	2	-	-	-	-	-	-	-	-	-	-	-			
CO-4	2	-	-	-	-	-	-	-	-	-	-	-			





# **Department of Computer Science & Engineering**

# **Innovation and Design Thinking**

[As per Choice Based Credit System (CBCS) & OBE Scheme]

# SEMESTER – III

Course Code	P21AEC309	Credits	01
Teaching Hours/Week (L: T:P: S)	0:2:0	CIE Weightage	50
Total Hours of Pedagogy	25	SEE Weightage	50
Exam Hour	01	<b>Total Marks</b>	100

Course Category: Foundation

**Preamble:** This course provides an introduction to the basic concepts and techniques of engineering and reverses engineering, the process of design, analytical thinking and ideas, basics and development of engineering drawing, application of engineering drawing with computer aide.

## Course objectives:

- To explain the concept of design thinking for product and service development
- To explain the fundamental concept of design thinking
- To discuss the methods of implementing design thinking in the real world.

#### Module-1

# **Understanding Design Thinking**

Definition of design - Design Vs Engineering Design - Difference between Design and Engineering Design - The General Design process Model - Design to Design thinking - Time line of Design thinking.

#### **Module-2**

# Features of Design Thinking

Venn diagram of design thinking— Design thinking resources— Design thinking process Models— Design thinking methodologies

#### **Module-3**

#### Models to Do Design Thinking

Different kinds of thinking – 5 Stage d.School Process - 5 stages of Stanford – Empathize – Define-Ideate – Prototype – Test – Iterate - Applications of Design Thinking.

#### **Module-4**

**Design thinking for Engineering -** Concept models for comparing design thinking and engineering systems thinking - The Distinctive Concept Model - The Comparative Concept Model - The Inclusive Concept Model - The Integrative Concept Model.

#### **Module-5**

**Design Thinking Tools and Methods -** Purposeful Use of Tools and Alignment with Process - What Is: Visualization - What Is: Journey Mapping - What Is: Value Chain Analysis - What Is: Mind Mapping - What If: Brainstorming - What If: Concept Development - What Wows: Assumption Testing - What Wows: Rapid Prototyping - What Works: Customer Co-Creation - What Works: Learning Launch.





# **Department of Computer Science & Engineering**

#### **Course Outcomes:**

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Understanding Design Thinking process	L2
CO2	Appreciate various design process procedure	L2
СОЗ	Generate and develop design ideas through different Technique.	L2
CO4	Identify the significance of reverse Engineering to Understand products	L3
CO5	Practice the methods, processes, and tools of Design Thinking	L2

## **Suggested Learning Resources:**

#### **Text Books:**

- 1. John.R.Karsnitz, Stephen O'Brien and John P. Hutchinson, "Engineering Design", Cengage learning (International edition) Second Edition, 2013.
- 2. Roger Martin, "The Design of Business: Why Design Thinking is the Next Competitive Advantage", Harvard Business Press, 2009.

## **References:**

- 1. Jake knapp, John keratsky and Braden kowitz "Sprint how to solve big problems and test new ideas in just five days"
- 2. Tim Brown "Change by design"
- 3. Steve Krug "Don't make me think; Revisited"
- 4. Roger martin "The design of Business"
- 5. Yousef Haik and Tamer M.Shahin, "Engineering Design Process", CengageLearning, SecondEdition, 2011.
- 6. Idris Mootee, "Design Thinking for Strategic Innovation: What They Can't Teach You at Businessor Design School", John Wiley & Sons 2013.
- 7. Hasso Plattner, Christoph Meinel and Larry Leifer (eds), "Design Thinking: Understand Improve Apply", Springer, 2011





# **Department of Computer Science & Engineering**

**Basic Engineering Mathematics - I** 

[As per Choice Based Credit System (CBCS) & OBE Scheme] **SEMESTER – III (Lateral Entry: Common to all branches)** 

Course Code:	P21MDIP301	Credits:	00
Teaching Hours/Week (L:T:P):	2-2-0	CIE Marks:	100
Total Number of Teaching Hours:	40	SEE Marks:	-

Course Learning Objectives: The mandatory learning course P21MADIP301viz., Basic Engineering Mathematics-I aims to provide basic concepts of complex trigonometry, vector algebra, differential & integral calculus, vector differentiation and various methods of solving first order differential equations.

UNIT – I 8 Hours

**Complex Trigonometry:** Complex Numbers: Definitions & properties. Modulus and amplitude of a complex number, Argand's diagram, De- Moivre's theorem (without proof).

Vector Algebra: Scalar and vectors. Vectors addition and subtraction. Multiplication of vectors (Dot and Cross products). Scalar and vector triple products-simple problems.

Self-study De-Moivre's theorem (without proof). Roots of complex number - Simple problems.

UNIT – II 8 Hours

**Differential Calculus:** Polar curves –angle between the radius vector and the tangent pedal equation- Problems. Taylor's series and Maclaurin's series expansions- Illustrative examples.

**Partial Differentiation**: Elementary problems. Euler's theorem for homogeneous functions of two variables. Total derivatives-differentiation of composite and implicit function.

**Self-study component:** 

Review of successive differentiation. Formulae for nth derivatives of standard functions- Liebnitz's theorem (without proof). Application to Jacobians, errors & approximations.

UNIT – III 8 Hours

**Integral Calculus:** reduction formulae for  $sin^n x$ ,  $cos^n x$ , and  $sin^m x cos^m x$  and evaluation of these with standard limits-Examples. Applications of integration to area, length of a given curve, volume and surface area of solids of revolution.

Self-study component:

fferentiation under integral sign (Integrals with constants limits)-Simple problems.

UNIT – IV

8 Hours

**Vector Differentiation:** Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence, Curl and Laplacian (Definitions only).

Self-study component:

Solenoidal and irrotational vector fields-Problems.





# **Department of Computer Science & Engineering**

	UNIT – V 8 Hour					
degree	<b>Ordinary differential equations (ODE's)</b> : Introduction-solutions of first order and first degree differential equations: homogeneous, exact, linear differential equations of order one and equations reducible to above types.					
Self-study component:  Applications of first order and first degree ODE's - Orthogonal trajectories of Cartesian and polar curves. Newton's law of cooling R-L circuits- Simple illustrative examples from engineering field.						
Cours	se Outcomes	After the successful completion of the course, the students are	e able to			
CO1		fundamental concepts —in complex numbers and vector algebra to ng in related area of engineering field.	analyze the			
CO2	CO2 Identify – partial derivatives to calculate rate of change of multivariate functions.					
CO3 Apply - the acquired knowledge of integration and differentiation to evaluate double and triple integrals tocompute length surface area and volume of solids of revolution and indentify velocity, acceleration of a particle moving in a space.						
CO4	<b>CO4</b> Find analytical solutions by solving first order ODE's which arising in different branches of engineering.					

#### **TEXT BOOKS**

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition), Khanna Publishers, New Delhi
- 2. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw Hill publications, New Delhi, 11thReprint, 2010.

# **REFERENCE BOOKS**

- 1. Erwin Kreyszig, Advanced Engineering Mathematics (Latest Edition), Wiley Publishers, New Delhi.
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International Publishing House Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- 4. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East–West press, Reprint 2005.
- 5. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	<b>PO12</b>
CO1	3	2										
CO2	3	2										
CO3	2	3										
CO4	2											
CO5	3											
	Strength of correlation: Low-1, Medium- 2, High-3											





# **Department of Computer Science & Engineering**

# **Employability Enhancement Skills (EES) - I**

[As per Choice Based Credit System (CBCS) & OBE Scheme]

#### **SEMESTER - III**

Course Code:	P21HDIP308	Credits:	01
Teaching Hours/Week (L:T:P):	0:2:0	CIE Marks:	100
<b>Total Number of Teaching Hours:</b>	28	SEE Marks:	-

**Course Learning Objectives:** This course will enable students to:

- Get introduced to some of the concepts of soft skills and enhance communication skills
- Recognize common mistakes done by an individual in the course of his / her communication
- Write effective emails
- Identify their strengths, weakness, opportunities and threats
- Understand the basic rules of sentence structures
- Understand the correct usage of parts of speech, tenses and articles
- Explain divisibility roles, properties of various types of numbers
- Explain application of percentage in our daily life
- Describe the concepts of profit, loss, discounts
- Explain concepts behind logical reasoning modules of arrangements and blood relations

UNIT – I	10 Hours
UNIT – I	10 Ho

**Soft Skills:** LSRW, Listening, communication skills (verbal and non-verbal skills), public speaking, Email writing, SWOT Analysis

Self-Study: Motivation and Time Management

UNIT – II 10 Hours

**Verbal Ability:** Parts of Speech - Prepositions, Adjectives and Adverbs; Tenses, Articles, Idioms and Phrasal verbs, Subject verb agreement, Synonyms and Antonyms

**Self-Study:** Para jumbles and one word substitution

UNIT – III	8 Hours

Quantitative Aptitude: Number system, Percentage, Profit & Loss

**Logical Reasoning:** Blood Relations and Arrangements

Self-Study: Speed Maths





# **Department of Computer Science & Engineering**

Course Outcomes: On completion of this course, students are able to:			
CO – 1: Exhibit amplified level of confidence to express themselves in English			
CO – 2:	Understand the correct usage of tenses and articles		
CO – 3:	Increase the number of words in his/her day to day		
CO – 4:	Solve logical reasoning problems based on blood relations and arrangements		
CO - 5:	Solve the problems based on number system, percentage and profit & loss		

## **Text Book(s):**

- 1. Word Power Made Easy New Revised and Expanded Edition, First Edition, Norman Lewis, Goyal Publisher.
- 2. Essential English Grammar by Raymond Murphy, Cambridge University Press, new edition
- 3. The 7 habits of Highly Effective People by Stephen R. Covey
- 4. Quantitative aptitude by Dr. R. S Agarwal, published by S.Chand private limited.
- 5. Verbal reasoning by Dr. R. S Agarwal, published by S. Chand private limited.

## **Reference Book(s):**

- 1. Quantitative Aptitude by Arun Sharma, McGraw Hill Education Pvt Ltd
- 2. CAT Mathematics by Abhijith Guha, PHI learning private limited.

# Web and Video link(s):

1. Improve Your English Communication Skills Specialization <a href="https://www.coursera.org/specializations/improve-english">https://www.coursera.org/specializations/improve-english</a>

	COURSE ARTICULATION MATRIX [Employability Enhancement Skills (EES) - I]											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	-	-	-	-	-	=	-	-	2	3	-	2
CO-2	-	-	_	-	-	-	-	-	-	2	-	2
CO-3	-	-	_	-	-	-	-	-	-	2	-	2
CO-4	2	-	-	-	-	-	-	-	-	-	-	-
CO-5	2	-	-	-	-	-	-	-	-	-	-	-





**Department of Computer Science & Engineering** 

# **Applied Mathematical Methods**

[As per Choice Based Credit System (CBCS) & OBE Scheme] SEMESTER – IV (Common to EC, EE, CS, IS)

Course Code:	21MA401B	Credits:	03
Teaching Hours/Week (L:T:P):	2-2-0	CIE Marks:	50
<b>Total Number of Teaching Hours:</b>	40	SEE Marks:	50

## **Course Learning Objectives:**

- Adequate exposure to basics of engineering mathematics so as to enable them to visualize the applications to engineering problems.
- Analyze the concept of complex variables in terms real variables
- Understand the concept of statistical methods to fit curves of samples and correlation and regression analysis
- To have a insight into numerical techniques to find solution of equations having no analytic solutions
- Provide insight into develop probability distribution of discrete and continuous random variables Testing hypothesis of sample distribution

UNIT – I 8 Hours

**Calculus of complex functions:** Introduction to functions of complex variables. Definitions of limit, continuity and differentiability, Analytic functions: Cauchy- Riemann equations in Cartesian and polar forms (no proof) and consequences. Applications to flow problems. Construction analytic functions: Milne-Thomson method-Problems.

**Conformal transformations**: Introduction. Discussion of transformations  $= \dot{2}, = \dot{2}, = \dot{3}, = \dot{4}, = \dot$ 

Self-study	Derivation of Cauchy- Riemann equation in Cartesian and polar forms,
component:	transformations of reflection, translation and Inversion.

UNIT – II 8 Hours

**Complex integration:** complex line integrals. Cauchy theorem, Cauchy integral formula. Taylor's and Laurent's series (Statements only) and illustrative examples. Singularities, poles and residues. (Statement only). Examples.

**Curve Fitting:** Curve fitting by the method of least squares, fitting the curves of the forms

$$y = {}^{2} + \circ \dot{y} = \circ \dot{y} \circ y e^{bx} \circ y \cdot \dot{y} b \circ y \cdot \dot{y} b \circ y \cdot \dot{y} + c$$

**Statistical Methods:** Correlation and regression-Karl Pearson's coefficient of correlation and rank correlation- problems, Regression analysis, lines of regression, problems.

<b>Self-study</b>	Contour integration Type-I & Type-II
component:	January - Jrana - Jran

UNIT – III 8 Hours

**Solution of algebraic and transcendental equations**: Introduction, Bisection method, Regula-Falsi & Newton-Raphson method:- Illustrative examples only.

**Numerical solution of ordinary differential equations (ODE's)**: Numerical solutions of ODE's of first order and first degree – Introduction. Taylor's series method. Modified Euler's method, Runge - Kutta method of fourth order (All formulae without proof). Illustrative examples only.

Numerical methods for system of linear equations- Gauss-Jacobi and





# **Department of Computer Science & Engineering**

Gauss- Seidel iterative methods. Determination of largest eigen value and corresponding eigen vector by power method.

Self-study component:

Solution of equations using secant method, Picards method.

## UNIT – IV

8 Hours

**Random variables and Probability Distributions:** Review of random variables. Discrete and continuous random variables-problems. Binomial, Poisson, Exponential and Normal distributions (with usual notation of mean and variance)-: problems.

**Joint Probability Distributions :** Introduction, Joint probability and Joint distribution of discrete random variables and continuous random variables

**Self-study component:** 

Geometric and Gamma distributions- problems.

UNIT - V

8 Hours

# **Stochastic Processes and sampling theory:**

**Markov Chains:** Markov chains, Classification of Stochastic processes, Probability vector, Stochastic matrix, Regular stochastic matrix, Transition probabilities and Transition probability matrix.

**Testing of Hypothesis** Sampling distributions-introduction. Standard error, Type-I and Type-II errors. Testing of hypothesis and confidence intervals for means. Student's t – distribution and Chi-square distribution as a test of goodness of fit - Illustrative examples only.

Self-study component:

Classification of Stochastic process, Bernoulli Process, Poisson

Process

**Course Outcomes:** On completion of the course, student should be able to:

- **CO1** Apply the concepts of an analytic function and their properties to solve the problems arising in engineering field
- CO2 Use the concept of correlation and regression analysis to fit a suitable mathematical model for the statistical samples arise in engineering field
- **CO3 Apply** the acquired knowledge of numerical technique to solve equations approximately having no analytical solutions.
- **CO4** Explain discrete and continuous probability distributions in analyzing the probability models and solveproblems involving Markov chains.





# **Department of Computer Science & Engineering**

# **TEXT BOOKS**

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016.

#### REFERENCE BOOKS

- 1. V. Ramana: Higher Engineering Mathematics, McGraw –Hill Education, 11th Ed..
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International Publishing House Pvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

## **ONLINE RESOURCES**

- 1. <a href="http://www.nptel.ac.in">http://www.nptel.ac.in</a>
- 2. <a href="https://en.wikipedia.org">https://en.wikipedia.org</a>
- 3. <a href="http://mcatutorials.com/mca-tutorials-numerical-methods-tutorial.php">http://mcatutorials.com/mca-tutorials-numerical-methods-tutorial.php</a>
- 4. https://www.iitg.ac.in/physics/fac/charu/courses/ph503/book.pdf

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO10</b>	<b>PO11</b>	<b>PO12</b>
CO1	3	3										
CO2	3	2										
CO3	3	3										
CO4	2	3										
CO5	3	3										

**Strength of correlation:** Low-1, Medium- 2, High-3





# **Department of Computer Science & Engineering**

	me as I									
		THEO	RY OF COMPUTATI	ON						
[As per Choice Based Credit System (CBCS) & OBE Scheme]										
			SEMESTER - IV							
Course Code		P21CS402	Credits:	03						
	urs/Week (L:		3:0:0	CIE Marks:	50 50					
Total Number of Teaching Hours: 40 SEE Marks:										
	ning Objectiv									
_	finite automa									
_	regular expre	ssion								
• Design										
	push-down at									
Design Turing machines										
UNIT – I			FINITE AUTOMATA		8 Hours					
			inite automata, Nonde ication of finite automa	terministic finite autom ta	ata, Finite					
Self-study co	Self-study component: Extended transitions and languages for DFA,NFA and $\epsilon$ -NFA									
UNIT – II	UNIT – II REGULAR EXPRESSIONS, LANGUAGES AND PROPERTIES 8 Hours									
Regular expressions, Finite Automata and Regular Expressions, Pumping Lemma for regular										
languages, Equivalence and minimization of automata, Applications.										
Self-study component: Closure properties; Decision properties										
UNIT - III CONTEXT FREE GRAMMERS, LANGUAGES AND 8 Hours										
PROPERTIES										
	•			umping lemma for CFLs,	Normal					
forms : Chomsky's Normal Forms ,GNF, Applications.										
Self-study co	mponent:	Closure pr	operties of CFLs.							
UNIT – IV	PUSHDOWN AUTOMATA 8 Hour									
Definition of the Pushdown automata, the languages of a PDA, Deterministic Pushdown Automata,										
Equivalence of	of PDA's and	CFG's, CFC	i to PDA.							
Self-study component: PDA to CFG										
UNIT – V TURING MACHINES										
		_	echniques for Turning om that is RE, Post's Co	Machines; Extensions to rrespondence problem.	the basic					
Self-study co	mponent:	Problems	that Computers can	not solve, Turing Ma	chine and					
ľ	-	Computers	1							
COs Course	Outcomes wi	_	rbs for the course topics	S						
CO1 Understand the basic concept of Automata.										

Design an automaton.

Apply the knowledge of Automata Theory for formal Languages CO3 Analyze automata and their computational power to recognize languages

CO2

CO4





# **Department of Computer Science & Engineering**

#### **Text Book(s):**

1. John C Martin: Introduction to Languages and Automata Theory, 3rd Edition, Tata McGraw Hill, 2007.

# **Reference Book(s):**

- 1. John E... Hopcroft, Rajeev Motwani, Jeffrey D.Ullman: Introduction to Automata Theory, Languages and Computation, 3rd Edition, Pearson education, 2014.
- 2. Daniel I.A. Cohen: Introduction to Computer Theory, 2nd Edition, John Wiley & Sons, 2004.

# Web and Video link(s):

- 1. <a href="https://www-2.dc.uba.ar/staff/becher/Hopcroft-Motwani-Ullman-2001.pdf">https://www-2.dc.uba.ar/staff/becher/Hopcroft-Motwani-Ullman-2001.pdf</a>
- 2. <a href="https://www.mog.dog/files/SP2019/Sipser_Introduction.to.the.Theory.of.Computation.3E.pdf">https://www.mog.dog/files/SP2019/Sipser_Introduction.to.the.Theory.of.Computation.3E.pdf</a>

## E-Books/Resources:

1. https://tinyurl.com/bdfst7kn

# **CO-PO Mapping**

CO	Statement	PO	PSO1	PSO2	PSO3											
		1	2	3	4	5	6	7	8	9	10	11	12			
CO1	<b>Understand</b> the															
	basic concept of	3	2	1										2	2	
	Automata.															
CO2	Apply the															
	knowledge of															
	Automata Theory	3	1	1										2	2	
	for formal															
	Languages															
CO3	Analyze automata															
	and their															
	computational	1	2	1											2	
	power to	1	3											2		
	recognize															
	languages															
CO4	Design an	1	1	3												
	automaton.													2	3	





### **Department of Computer Science & Engineering**

DECICN AND ANALYZIS OF ALCODITIMS

DESIGN AND ANALYSIS OF ALGURITHMS
[As per Choice Based Credit System (CBCS) & OBE Scheme]
$\mathbf{SEMESTER} - \mathbf{IV}$

Course Code:	P21CS403	Credits:	03			
Teaching Hours/Week (L:T:P):	3:0:0	CIE Marks:	50			
<b>Total Number of Teaching Hours:</b>	40	SEE Marks:	50			

**Prerequisites:** Students should have knowledge of Programming language and Data structures.

**Course Learning Objectives:** This coursewill enable students to:

- Explain various computational problem-solving techniques.
- Apply appropriate method to solve a given problem.
- Describe various methods of algorithm analysis.

UNIT - I 8 Hours

**Introduction:** Algorithm, Fundamentals of Algorithmic problem solving, Important Problem Types, Fundamental Data Structures - Graphs, Fundamentals of the **Analysis of Algorithm Efficiency**: Analysis Framework, Asymptotic Notations and Basic Efficiency Classes, Mathematical analysis of Non-Recursive Algorithms with Examples [Max Element, Unique Elements] and Recursive Algorithms with Examples [Factorial, Tower of Hanoi].

**Self-study component:** Additional Examples of Mathematical analysis of Non-Recursive& Recursive Algorithms.

UNIT - II 8 Hours

**Brute Force and Exhaustive Search**: Selection Sort, Brute-Force String Matching, Exhaustive Search [Travelling Salesman Problem and Knapsack Problem]. **Decrease and Conquer**: Introduction, Insertion Sort, Depth First Search, Breadth First Search, Topological Sorting, Algorithms for Generating Combinatorial Objects.

**Self-study component:** Bubble Sort and Sequential Search.

UNIT - III 8 Hours

**Divide and Conquer**: Merge sort, Quick Sort, Multiplication of Large integers and Strassen' Matrix Multiplication. **Transform and Conquer**: Pre sorting, Balanced Search Trees, Heaps and Heap sort.

**Self-study component:** Binary Tree Traversals and Related Properties.

UNIT - IV 8 Hours

**Space and Time Tradeoffs**: Sorting by counting, Input Enhancement in String Matching, Hashing. **Dynamic Programming**: Three Basic Examples, the Knapsack Problem, Warshall's and Floyd's Algorithms.

**Self-study component:** B-Trees, Optimal Binary Search Trees.





### **Department of Computer Science & Engineering**

UNIT - V				8 Hours
Crondy Tool	aniana, Vanalralia Alaamithaa	Duine's Algorithm	Dijilatus'a Alasmithus	Limitations

**Greedy Technique**: Kruskal's Algorithm, Prim's Algorithm, Dijikstra's Algorithm. Limitations of Algorithm Power: P, NP and NP- Complete Problems. Coping with the Limitations of Algorithm Power: Backtracking: n-Queens Problem, Subset-Sum Problem, Branch and Bound: Knapsack Problem.

**Self-study component:** Lower Bound Arguments, Decision trees.

**Course Outcomes:** On completion of this course, students are able to:

### **Course Outcomes** with *Action verbs* for the Course topics

**CO2** Analyze the asymptotic performance of algorithms

**CO3** Design solutions for the given problem using algorithmic technique.

### **Text Book(s):**

1. Introduction to the Design and Analysis of Algorithms, Anany Levitin, 3rd Edition, 2011. Pearson.

### **Reference Book(s):**

- 1. Computer Algorithms/C++, Ellis Horowitz, SatrajSahni and Rajasekaran, 2nd Edition, 2014, Universities Press.
- 2. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI.

### Web and Video link(s):

- 1. Algorithms: Design and Analysis, Part 1 (Coursera) | MOOC List (mooc-list.com)
- 2. <a href="https://onlinecourses.nptel.ac.in/noc15_cs02/preview">https://onlinecourses.nptel.ac.in/noc15_cs02/preview</a>

### **CO-PO Mapping**

CO	Statements	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	Understand the basic concepts of various algorithmic techniques	3												2		
CO2	Analyze the asymptotic performance of algorithms	1	2											2		
CO3	<b>Design</b> solutions for the given problem using algorithmic technique.	1	2	2										2		1





### **Department of Computer Science & Engineering**

### **DATABASE MANAGEMENT SYSTEM (Integrated)**

[As per Choice Based Credit System (CBCS) & OBE Scheme]

#### SEMESTER – IV

Course Code:	P21CS404	<b>Credits:</b>	04
Teaching Hours/Week (L: T:P):	3:0:2	CIE Marks:	50
<b>Total Theory Teaching Hours:</b>	40	SEE Marks:	50
<b>Total Laboratory Hours:</b>	24		

#### **Course Learning Objectives:**

- 1. To learn the basic knowledge of Database Management System and various types of data models.
- 2. To learn the concept and syntax of ER Diagram, relational data model and relational algebra.
- 3. To learn and write various SQL queries.
- 4. To learn the concept of Normalization.
- 5. To learn the various issues in Transaction processing.

UNIT – I		8 Hours
----------	--	---------

**Introduction to Databases:** Introduction, Characteristics of the database approach, Advantages of using the DBMS Approach.

**Database System Concepts and Architecture:** Data Models, Schemas, and Instances, Three-Schema Architecture and Data Independence.

**Introduction to ER model:** Entity Types, Entity Sets, attributes and keys, Relation Types, Relationship Sets, roles, and structural constraints, Weak Entity Types, ER Diagrams.

Self-study component: Actors on the scene, Workers behind the scene, Database L and Interfaces, Relationship Types of Degree Higher Than Tw			
Practical Topics: (6 Hours)	<ol> <li>Introduction to ER diagram tool. (Draw.io)</li> <li>Create an ER diagrams Company Database system database System using tool.</li> </ol>	and Banking	
UNIT – II		8 Hours	

**Relational Model:** Relational Model Concepts, Relational Model Constraints, update operations dealing with constraint violations, Relational Database Design using ER-to-Relational mapping.

**Relational Algebra:** Unary and Binary relational operations, Examples of simple queries in relational algebra.

Creation of table in SQL:SQL Data Definition and Data types.

<b>Self-study component:</b>	Additional relational operations,					
<b>Practical Topics:</b>	1. Consider the company database and create the below tables by					
(6 Hours)	properly specifying the primary keys and the foreign keys Employee (Fname: varchar, Minit: Char, Lname: varchar, ssn:int,					
	Bdate: Date, Address: varchar, Sex: char, salary: decimal,					
	Super_ssn:int, DNO:int)					
	<b>Department</b> (Dname: varchar, <u>Dnumber</u> : int, mgr_ssn: int,					



# P.E.S. College of Engineering, Mandya Department of Computer Science & Engineering



	mgr_start_date: date)				
	<b>Dept_location</b> (Dnumber: int, Dlocation: varchar)				
	<b>Project</b> (pname: varchar, pnumber: int, plocation: varchar,				
	dnum:int)				
	Works_on (Essn: int, pno:int, hours: decimal)				
	<b>Dependent</b> (Essn: char, dependent_name: varchar, sex: char,				
	Bdate: date, relationship: varchar)				
	2. Insert at least five tuples in each relation.				
UNIT – III	8 Hours				
<b>SQL:</b> Specifying const	traints in SQL, retrieval queries in SQL, INSERT, DELETE, and				
	SQL, More Complex SQL Retrieval Queries.				
<b>Self-study component:</b>	Schema change statements in SQL.				
Practical Topics:	1. Retrieve the name and address of all employees who work for the 'Research' department.				
(4 Hours)	2. For every project located in 'Stafford', list the project number, the				
	controlling department number, and the department manager's last				
	name, address, and birth date.				
	3. For each employee, retrieve the employee's first and last name and				
	the first and last name of his or her immediate supervisor.				
	4. Make a list of all project numbers for projects that involve an				
	employee whose last name is 'Smith', either as a worker or as a				
	manager of the department that controls the project.				
	5. Retrieve all employees whose address is in Houston, Texas				
	6. Retrieve all employees in department 5 whose salary is between				
	\$30,000 and \$40,000.				
	Execute above quires for the Company database defined in Unit-II.				
UNIT – IV	8 Hours				
	s Assertions and Triggers, Views in SQL.				
Basics of Functional D design guidelines for rel	Dependencies and Normalization for Relational Databases: Informal ation schema, Functional Dependencies: Inference rules, Normal Forms First, Second and Third Normal Forms, Boyce—Codd Normal Form.				
<b>Self-study component:</b>	Nested Queries				
<b>Practical Topics:</b>	1. Retrieve the names of all employees who do not have supervisors.				
(4 Hours)	2. Retrieve the name of each employee who has a dependent with the				
(4 Hours)	same first name and is the same gender as the employee				
	3. Retrieve the names of employees who have no dependents.				
	4. List the names of managers who have at least one dependent.				
	5. Retrieve the Social Security numbers of all employees who work				
	on project numbers 1, 2, or 3.				
	6. Find the sum of the salaries of all employees of the 'Research'				





### **Department of Computer Science & Engineering**

	7. For each department, retrieve the department number of employees in the department, and their average sal Execute above quires for the Company database defined	ary.
	department, as well as the maximum salary, the minimand the average salary in this department.	•
	1	

UNIT – V 8 Hours

**Database Design:** Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form.

**Transaction Processing:** Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, characterizing schedules based on Serializability: Serial, Non-serial and conflict-serializable, Testing for conflict serializability of a schedule.

Seriai	Serial, Non-serial and conflict-serializable, Testing for conflict serializability of a schedule.							
Self-s	tudy component:	<b>nponent:</b> Characterizing schedules based on recoverability						
Practi	Practical Topics: Consider the following database for a Banking enterprise:							
(4 Ho	urs)	BRANCH (branch-name: string,branch-city: string,assets: real) ACCOUNT (accno:int,branch-name: string,balance: real)						
	<b>DEPOSITOR</b> (customer-name: string,accno:int)							
		<b>CUSTOMER</b> (customer-name: string,customer-street: string,city: string)						
		LOAN (loan-number:int,branch-name: string,loan-number-int)						
		<b>BORROWER</b> (customer-name: string,customer-street: string,city:						
		string)						
		1) Create the above tables by properly specifying the primary and foreign keys						
		2) Enter 5 tuples for each relation						
		3) Find all the customers who have atleast two accounts at the main branch						
		4) Find all the customers who have an account at all the branches						
		located in a specified city						
		5) Demonstrate how you delete all account tuples at every branch						
		located in a specified city						
Cours	se Outcomes: On c	completion of this course, students are able to:						
COs	Course Outcomes with Action verbs for the Course topics.							
CO1	Apply the databas	<b>apply</b> the database concepts to create the relations by specifying various constraints.						
CO2	<b>Desi</b> gn ER diagrams for given scenario.							
CO3	Apply suitable no	ormalization technique to improve database design.						
CO4	Conduct experiments on given database using modern tools: Draw io,MySQL.							
Text l	Book(s):							
1. Fundamentals of Database Systems – Elmasri and Navathe, 6th Edition, Addison-Wesley,								

 Fundamentals of Database Systems – Elmasri and Navathe, 6th Edition, Addison-Wesley, 2011.





### **Department of Computer Science & Engineering**

### **Reference Book(s):**

- 1. Data Base System Concepts Silberschatz, Korth and Sudharshan, 5th Edition, Mc-Graw Hill, 2006
- 2. An Introduction to Database Systems C.J. Date, A. Kannan, S. Swamynatham, 8th Edition, Pearson Education, 2006.

### Web and Video link(s):

- 1. <a href="https://onlinecourses.nptel.ac.in/noc22_cs91/">https://onlinecourses.nptel.ac.in/noc22_cs91/</a>
- 2. <a href="https://youtu.be/c5HAwKX-suM">https://youtu.be/c5HAwKX-suM</a>

### **NPTEL Web Course:**

- 1. <a href="https://onlinecourses.nptel.ac.in/noc18_cs15/preview">https://onlinecourses.nptel.ac.in/noc18_cs15/preview</a>
- 2. http://nptel.ac.in/courses/106106093/
- 3. <a href="http://nptel.ac.in/courses/106106095/">http://nptel.ac.in/courses/106106095/</a>

### **CO-PO Mapping**

CO	Statement	PO	PSO	PSO	PSO											
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Apply the database	3												3	3	
	concepts to create															
	the relations by															
	specifying various															
	constraints.															
CO2	<b>Desi</b> gn ER diagrams	2	2	3									1	3	3	
	for given scenario.															
CO3	<b>Apply</b> suitable	3	1	2										2	2	
	normalization															
	technique to improve															
	database design.															
CO4	Conduct experiments	2	2	2	1	3				1			1	3	3	
	on given database															
	using modern tools:															
	Draw io, MySQL.															





### **Department of Computer Science & Engineering**

### **AVR MICROCONTROLLER**

[As per Choice Based Credit System (CBCS) & OBE Scheme]

### SEMESTER – IV

Course Code:	P21CS405	Credits:	04
Teaching Hours/Week (L: T:P):	3:0:2	CIE Marks:	50
<b>Total Theory Teaching Hours:</b>	40	SEE Marks:	50
<b>Total Laboratory Hours:</b>	24		

### **Course Learning Objectives:**

- Explain the fundamentals of AVR microcontroller
- Develop ALP/C programs using arithmetic and logical instructions
- Implement ALP/C code to accept data from external device process it and send the data to external device.

<ul><li>external device.</li><li>Implement the code</li></ul>	for an application which require modular programming conc	cept.					
UNIT – I		8 Hours					
for choosing microcontrol AVR data memory, AV .INCLUDE. The program	Imbedded Processors: Microcontroller versus microprocess ller. Overview of the AVR family, General purpose registers of R status register, AVR assembler directivesEQU, .ORG counter and program ROM space in AVR- Program counter AVR family, ROM width in the AVR.	s in AVR, the G, .SET and					
<b>Self-study component:</b>	Numbering and coding system, Semiconductor Memories, Von Neumann Architecture.	Harvard and					
Practical Topics:  (6 Hours)  Use ATMEL studio software and observe the contents of various registers, ports and memory with simple alp programs.							
UNIT – II	UNIT – II 8 Hours						
ADD, ADC, ADDI, ADI <b>Logical instructions</b> - Al	ns-LDS,LDI, MOV, STS. Arithmetic instructions (unsigned DIW, SUB, SBC, SUBI, SBCI, SBIW, MUL, Division, INC, ND, OR EOR, COM, NEG, ROL, ROR, LSR, LSL, ASR I looping- BREQ, BRNE, BRSH, BRLT, BRGE, BRVS, BR	C, DEC, CP. and SWAP.					
Self-study component:	Arithmetic instructions (signed numbers). Uncondition instructions.	onal branch					
Practical Topics: (6 Hours)	<ol> <li>Write a program to find greatest of three numbers.</li> <li>Write a program to div two numbers.</li> <li>Write a program to whether the given number is pownot.</li> </ol>	ver of 2 or					
UNIT – III		8 Hours					
Call instructions and Sta	ck: CALL, RCALL, and ICALL. I/Oport programming in A	VR, I/O Bit-					
Self-study component: AVR time delay: time delay calculation for AVR							



# P.E.S. College of Engineering, Mandya Department of Computer Science & Engineering



Practi	cal Topics:	1. Write a program to find the factorial of given positive number.							
(4 Ho	_	2. Write a program to accept two 8 bit numbers from PORTA and							
(	POTRB. Multiply two numbers and send the result to PORTC								
		(lower byte) and PORTD (higher byte).							
	3. Write a program to monitor the bit 1 of PORTC. If set send 'Y'								
		PORTA else send 'N' to PORTB.							
UNIT	- IV	8 Hours							
BCD	and ASCII convers	ion, Addressing Modes- single register, two register, Direct addressing							
	indirect addressing								
	tudy component:	Timer0 programming and look up table and table processing.							
Practi	cal Topics:	1. Write a program to convert packed BCD to ASCII.							
(4 Ho	-	2. Write a program to add 10 bytes of data stored starting from \$300.							
		Store the sum in R21 and carry in R22. (Use direct addressing							
		mode).							
		3. Write a program to count number of odd and even numbers among							
		n bytes of data stored starting from \$600 (Use indirect addressing							
		mode).							
UNIT	UNIT – V 8 Hours								
AVR	programming in C	2: Data types and time delays in C, I/O programming in C, Logic							
		version programs in C, Memory allocations in C. Data serialization in C.							
	tudy component:	Keypad interfacing: Interfacing the keypad to AVR							
Practi	cal Topics:	1. Write c program to blink LED connected to 1st pin of PORTC with							
/ 4 TT	_	appropriate delay.							
(4 Ho	urs)	2. A switch is connected to PORTA. If it is pressed the led should							
		glow. Write C program to perform the above said operation.							
		3. Write a program to read the temperature using sensor and display							
		the following message on the monitor according to the condition							
		given below. If temperature is greater than 32 display "high" else if							
		the temperature is lesser than the 32 display "low".							
Cours	e Outcomes: O O	n completion of this course, students are able to:							
COs	Course Outcomes	s with Action verbs for the Course topics.							
CO1	Explain the basic architecture and AVR instructions.								
CO2	2 Apply AVR assembly instructions to process the data stored in memory/register/io.								
CO3	Apply AVR C ins	tructions to process the data.							
CO4	Analyze the giver	n assembly program to identify bugs and write correct code and output.							
CO5	Implement and de	emonstrate the concept identified in the co-course.							
	I								





### **Department of Computer Science & Engineering**

### **Text Book(s):**

1. The AVR microcontroller and embedded system using assembly and C by Muhammad Ali Mazidi, Sarmad Naimi, Sepehr Naimi.

### **Reference Book(s):**

1. Programming and interfacing ATMEL's AVRs by Thomas grace.

### Web and Video link(s):

- 1. https://www.youtube.com/watch?v=LquFL2dlvDE
- 2. <a href="https://slideplayer.com/slide/3221593/">https://slideplayer.com/slide/3221593/</a>
- 3. https://www.youtube.com/watch?v=AjLUU3cDx08

### E-Books/Resources:

- 1 <a href="https://electrovolt.ir/wpcontent/uploads/2017/02/AVR_Microcontroller and Embedded Electrovolt.ir_.pdf">https://electrovolt.ir/wpcontent/uploads/2017/02/AVR_Microcontroller and Embedded Electrovolt.ir_.pdf</a>
- 2 https://researchdesignlab.com/projects/AVR%20BOOK.pdf

### **CO-PO Mapping**

CO	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	Explain the basic architecture and AVR instructions.	2														
CO2	Apply AVR assembly instructions to process the data stored in memory/register/IO.	2	2	2										1		
CO3	Apply AVR C instructions to process the data.	2	2	2										1		
CO4	Analyze the given assembly program to identify bugs and write correct code and output.	2	2	2										1		
CO5	Implement and demonstrate the concept identified in the co-course.	2	2	2		2				1			1	1		



# P.E.S. College of Engineering, Mandya Department of Computer Science & Engineering



	DESIGN AND ANALYSIS OF ALGORITHMS LABORATORY [As per Choice Based Credit System (CBCS) & OBE Scheme]								
	SEMESTER – IV								
Cou	Course Code: P21CSL406 Credits: 01								
Teac	ching Hours/Week (L:T:P):	0:0:2	CIE Marks:	50					
Tota	Total Number of Lab Hours: 24 SEE Marks: 50								
Note	: Implement the following prog	rams using C Lang	ıage						
		Experimen	t <u>s</u>						
1.	Print all the nodes reachable from method.	rom a given starting	node in a digraph usi	ing BFS					
2.	Obtain the Topological orderi	ng of vertices in a g	iven digraph (DFS Ba	ased).					
3.	3. Sort a given set of elements using Merge sort method and determine the time taken to sort the elements. Repeat the experiment for different values of <i>n</i> , the number of elements in the list to be sorted and plot a graph of the time taken versus <i>n</i> .								
4.	Sort a given set of elements u elements. Repeat the experime be sorted and plot a graph of the sorted and plot a graph of th	ent for different valu	n ies of $n$ , the number of						
5.	Find the Pattern string in a giv Algorithm.	en Text string using	g Horspool's String M	Iatching					
6.	Sort a given set of elements us	sing Heap Sort algo	rithm.						
7.	Implement 0/1 Knapsack prob	olem using Dynamic	Programming.						
8.	From a given vertex in a weighted connected graph, find shortest paths to other Vertices using Dijikstra's algorithm.								
9.	9. Find minimum cost spanning tree of a given undirected graph using Kruskal's Algorithm.								
10.	0. Implement Sum-of-Subset problem of a given set S = {s1, s2,, sn} of 'n' Positive integers whose sum is equal to a given positive integer'd'.								

Cours	Course Outcomes: On completion of this course, students are able to:						
COs	Course Outcomes with Action verbs for the Course topics						
CO1	Implement the algorithms based on various algorithm design techniques.						
CO2	Analyze the efficiency of various algorithms.						



# P.E.S. College of Engineering, Mandya Department of Computer Science & Engineering



### **CO-PO Mapping**

СО	Statements	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	Implement the algorithms based on various algorithm design techniques.	2	2	2		2							1	2		
CO2	Analyze the efficiency of various algorithms.	2	2											2		





### **Department of Computer Science & Engineering**

### **Employability Enhancement Skills (EES) - IV**

[As per Choice Based Credit System (CBCS) & OBE Scheme]

#### SEMESTER - IV

Course Code:	P21HSMC408	Credits:	01
Teaching Hours/Week (L:T:P):	0:2:0	CIE Marks:	50
Total Number of Teaching Hours:	28	SEE Marks:	50

**Course Learning Objectives:** This course will enable students to:

- Solve problems on ages, mixtures and alligations and progressions.
- Understand the concepts of Data interpretation, crypt arithmetic and data sufficiency.
- Understand the basic concepts of C programming language.
- Apply programming constructs of C language to solve the real-world problem.
- Explore user-defined data structures like arrays, structures and pointers in implementing solutions to the problems.
- Design and Develop solutions to problems using functions.

UNIT – I	10 Hours
----------	----------

**Quantitative Aptitude:** Problems on Ages, Mixtures and Alligations, Progressions. **Logical Reasoning:** Data Interpretation, Cryptarithmetic, Data sufficiency.

Self-Study: Sequential output tracing

UNIT – II	08 Hours
$\mathbf{O}\mathbf{M}\mathbf{I} = \mathbf{M}$	vo Hvuis

**C Programming:** Data types and Operators, Control statements, Looping, Arrays and Strings

**Self-Study:** Pre-processors

C Programming: Functions, Recursion, Structure, Pointers, Memory management.

**Self-Study:** Enum and Union

**Course Outcomes:** On completion of this course, students are able to:

CO – 1:	Solve the problems based on ages, Mixtures, alligations and progressions.
CO – 2:	Apply suitable programming constructs of C language to solve the given problem.
CO – 3:	Design and Develop solutions to problems using functions and recursion.





### **Department of Computer Science & Engineering**

### **Text Book(s):**

- 1. Quantitative aptitude by Dr. R. S Agarwal, published by S.Chand private limited.
- 2. Exploring C by Yashavant Kanetkar, 2nd edition, BPB Publications
- 3. Test Your C Skills by Yashavant Kanetkar, 2nd edition, BPB Publications

### **Reference Book(s):**

- 1. Quantitative Aptitude by Arun Sharma, McGraw Hill Education Pvt Ltd
- 2. Reema Thareja, Programming in C, 2nd Edition, Oxford University Press, 2016.
- 3. Schaum's outlines, Programming with C, Byron Gottfried, 3rdEdition, Tata McGraw-Hill Publication, 2017.

### Web and Video link(s):

1. NPTEL Course: Problem Solving through Programming in C, Prof. Anupam Basu, IIT Kharagpur

https://nptel.ac.in/courses/106/105/106105171/

C	COURSE ARTICULATION MATRIX [Employability Enhancement Skills (EES) - IV]											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2	-	-	-	-	-	-	-	-	-	-	-
CO-2	-	2	1	-	-	-	-	-	3	1	2	2
CO-3	-	1	2	-	-	-	-	-	-	2	-	1





### **Department of Computer Science & Engineering**

### Internship - I

[As per Choice Based Credit System (CBCS) & OBE Scheme]

### SEMESTER - IV

Course Code:	P21INT409	Credits:	01
Teaching Hours/Week (L:T:P):	0:0:0	CIE Marks:	-
Internship duration:	2 weeks	SEE Marks:	100

All the students registered to II year of BE shall have to undergo a mandatory internship of 02 weeks during the intervening vacation of II and III semesters or III and IV semester. Internship shall include Inter / Intra Institutional activities. A Semester End Examination (Presentation followed by question-answer session) shall be conducted during IV semester and the prescribed credit shall be included in IV semester. The internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take up / complete the internship shall be declared fail and shall have to complete during subsequent Semester End Examination after satisfying the internship requirements. (The faculty coordinator or mentor has to monitor the students' internship progress and interact to guide them for the successful completion of the internship.)

#### **List of Activities**

- 1. Activities concerned with the works of Indian scholars like Charaka and Susruta, Aryabhata, Bhaskaracharya, Chanakya, Madhava, Patanjali, Panini and Thiruvalluvar, among numerous others. (Reference NEP 2020, page 04)
- 2. Activities such as training with higher Institutions or Soft skill training organized by Training and Placement Cell of the respective institutions.
- 3. Contribution at incubation/innovation/entrepreneurship cell of the institute.
- 4. Participation in conferences/ workshops/ competitions etc.
- 5. Learning at Departmental Lab/Tinkering Lab/ Institutional workshop.
- 6. And working for consultancy/ research project with-in the institute. [Serial numbers 2 to 6, AICTE Internship Policy.pdf page 8]
- 7. Learning MS Word, Excel, Microsoft equations, MS drawing tools, MS Power point, etc.
- 8. Coding.
- 9. Mini-projects using commercially available assembled electronic products.
- 10. Debates, quizzes, and group discussions: On technica
- 11. Essay competitions: Both in Kannada and English on technical topics already studied.
- 12. Survey and study of published literature on the assigned topic: Technical paper survey, Preparation of synopsis. Exposure to technical paper publications.
- 13. Athletics and Sports.
- 14. Photography.
- 15. Short film production: Contemporary aspects, Technical aspects etc.
- 16. Music Competition (Vocal and Instrumental): Classical Indian and western, Sugama-Sangeetha (Bhava Geethegalu), Folk songs, film songs etc.
- 17. Internship in Disaster Management. [AICTE APH 2021-22 pdf page166]





### **Department of Computer Science & Engineering**

- 18. Solar energy connected activities that help common man. [AICTE APH 2021-22 pdf page166]
- 19. Working with Smart City Administration.
- 20. Hackathon (it is a design sprint-like event in which computer programmers and others involved in software development, including graphic designers, interface designers, project managers, and others, often including domain experts, collaborate intensively on software projects).
- 21. Industrial Safety, Fire Safety, Electrical Safety, Chemical Process Safety, Food Safety etc.
- 22. Internship and project work in Indian Knowledge System related Areas / Topics.
- 23. Industrial visits / small scale Industries / Factories / Cottage Industries / substation visit / short project tour, etc., and submission of report.

### **Documents to be submitted by Students for Internship Evaluation**

### I. Student's Diary

The main purpose of writing a daily diary is to cultivate the habit of documenting and to encourage the students to search for details. It develops the students' thought process and reasoning abilities. The students shall record in the daily training diary the day to day account of the observations, impressions, information gathered and suggestions given, if any, and activities carried out. It should contain the sketches and drawings related to the observations made by the students. The daily training diary should be signed after every day or at least twice a week by the Faculty/ in charge of the section (external expert) where the student has been working.

The student's Diary should be submitted by the students along with attendance record. It shall be evaluated on the basis of the following criteria:

- (i) Regularity in the maintenance of the diary.
- (ii) Adequacy and quality of information recorded.
- (iii) Drawings, sketches, and data recorded.
- (iv) Thought process and recording techniques used.
- (v) Organization of the information.

### **II.** Internship Report

After completion of the Internship, the student shall prepare, with daily dairy as a reference, a comprehensive report in consultation with the evaluators to indicate what he has observed and learned in the training period along with the internship outcomes. The training report should be signed by the Evaluator.

The Internship report shall be evaluated on the basis of the following criteria and/or other relevant criteria pertaining to the activity completed.

- (i) Originality.
- (ii) Adequacy and purposeful write-up.
- (iii) Organization, format, drawings, sketches, style, language etc.
- (iv) Variety and relevance of learning experience.

Practical applications relationships with basic theory and concepts taught in the course.



# P.E.S. College of Engineering, Mandya Department of Computer Science & Engineering



Tal	Table – 1: Intra and Inter Institute Activities and Assessment Rubrics										
Sl	Sub	Performance/	Assessment	Proposed	Evaluated by						
No	Activity	Appraisal	Rubrics	Document as							
	Head		(Allotted marks	Evidence							
			decide the								
			letter grade)								
1	Inter/Intra	Excellent	80 to 100	(i) Student's Diary	i) Institute Faculty						
	Institutional	Good	79 to 60	and	together with External						
	Workshop/ Training	Satisfactory	59 to 40		Expert if any.						
	Training.	Unsatisfactory and fail	<39	(ii) Internship Report along with the certificate issued from relevant authorized Authority	<ul><li>(ii) Training and Placement Officer.</li><li>(iii) Physical Education Officer or the concerned in charge Officer of the Activity</li></ul>						





### **Department of Computer Science & Engineering**

Dasic Engineering Wathematics - II
[As per Choice Based Credit System (CBCS) & OBE Scheme]
<b>SEMESTER – IV</b> (Lateral Entry: Common to all branches)

Racia Engineering Mathematics

Course Code:P21MDIP401Credits:00Teaching Hours/Week (L:T:P):2-2-0CIE Marks:100Total Number of Teaching Hours:40SEE Marks:-

Course objective: The mandatory learning course P21MADIP401 viz., BASIC ENGINEERING MATHEMATICS-II aims to provide essential concepts of linear algebra, introductory concepts of second & higher order differential equations along with various techniques/ methods to solve them, Laplace & inverseLaplace transforms and elementary probability theory.

UNIT – I 8 Hours

**Linear Algebra:** Introduction - Rank of matrix by elementary row operations - Echelon form of a matrix. Consistency of system of linear equations - Gauss elimination method. Gauss-Jordan and LU decomposition methods. Eigen values and Eigen vectors of a square matrix.

Self-study Application of Cayley-Hamilton theorem (without proof) to compute the inverse of a matrix-Examples.

UNIT – II 8 Hours

**Higher order ODE's:** Linear differential equations of second and higher order equations with constant coefficients. Homogeneous /non-homogeneous equations. Inverse differential operators. and variation of parameters. Solution of Cauchy's homogeneous linear equation and Legendre's linear differential equation.

Self-study component:

Method of undetermined coefficients

UNIT – III 8 Hours

**Multiple Integrals:** Double and triple integrals-region of integration. Evaluation of double integrals by change of order of integration.

**Vector Integration:** Vector Integration: Integration of vector functions. Concept of a line integrals, surface and volume integrals. Green's, Stokes's and Gauss theorems (without proof) problems.

**Self-study component:**thogonal curvilinear coordinates.

UNIT – IV 8 Hours

**Laplace transforms:** Laplace transforms of elementary functions. Transforms of derivatives and integrals, transforms of periodic function and unit step function-Problems only. Inverse Laplace transforms: Definition of inverse Laplace transforms. Evaluation of Inverse transforms by standard methods.

Self-study component: Application to solutions of linear differential equations and simultaneous differential equations.





### **Department of Computer Science & Engineering**

	8 Hours						
<b>Probability</b> : Introduction. Sample space and events. Axioms of probability. Addition and multiplication theorems. Conditional probability – illustrative examples.							
	Self-study component:  State and prove Bayes's theorem.						
Course	Outcomes: A	fter the successful completion of the course, the students are ab	le to				
CO1	Apply matrix th	neory for solving systems of linear equations in the different areas of linear equations are also below the different areas of linear equations are also below the different areas of linear equations are also below the different areas of linear equations are also below the different areas of linear equations are also below the different areas of linear equations are also below the different equations are also below the diff	near algebra.				
CO2		and higher order differential equations occurring in of electrical ciraped vibrations.	cuits,				
CO3	<b>Identify</b> - the technique of integration to evaluate double and triple integrals by change of variables, and vector integration technique to compute line integral						
CO4	<b>Explore</b> the basic concepts of elementary probability theory and, apply the same to the problems ofdecision theory.						
	•						

### **TEXT BOOKS**

- 1. B.S. Grewal, Higher Engineering Mathematics (44th Edition), Khanna Publishers, New Delhi.
- 2. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw Hill publications, New Delhi, 11thReprint, 2010.

#### REFERENCE BOOKS

- 1. Erwin Kreyszig, Advanced Engineering Mathematics (Latest Edition), Wiley Publishers, New Delhi.
- 2. H. C. Taneja, Advanced Engineering Mathematics, Volume I & II, I.K. International Publishing HousePvt. Ltd., New Delhi.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- 4. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East–Westpress, Reprint 2005.
- 5. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	<b>PO11</b>	PO12
CO1	3	2										
CO2	3	2										
CO3	2	3										
CO4	2	2										
CO5	3											
Strength of correlation: Low-1, Medium- 2, High-3												





### **Department of Computer Science & Engineering**

### **Employability Enhancement Skills (EES) - II**

[As per Choice Based Credit System (CBCS) & OBE Scheme]
SEMESTER – IV

Course Code:	P21HDIP408	Credits:	01
Teaching Hours/Week (L:T:P):	0:2:0	CIE Marks:	100
Total Number of Teaching Hours:	28	SEE Marks:	-

**Course Learning Objectives:** This course will enable students to:

- Get introduced to the concepts of teamwork and leadership
- Understand the importance of professional etiquettes
- Describe the reading with comprehension
- Explain the purpose, plan and ways to identify specific details in a paragraph for better comprehension
- Form grammatically correct sentences
- Explain the basic concepts in calculating simple interest and compound interest
- Explain concepts behind logical reasoning modules of direction sense, coding & decoding, series and visual reasoning

UNIT – I 10 Hours

**Soft Skills:** Etiquette, Presentation Skills, Introduction to Body Language, Interpersonal and Intrapersonal Skills, Team work, Leadership skills, Extempore

**Self-Study:** Concepts of Sympathy and Empathy

UNIT – II 10 Hours

Verbal Ability: Verbal Analogies, Sentence completion & correction, Reading comprehension

**Self-Study:** Paragraph sequencing

UNIT – III 8 Hours

**Quantitative Aptitude:** Simple & Compound Interest, Ratio & Proportion, Time & Work **Logical Reasoning:** Direction Sense, Coding and Decoding, Series, Visual reasoning

**Self-Study:** Directions and Pythagoras Theorem, differences between mirror and water images





### **Department of Computer Science & Engineering**

**Course Outcomes:** On completion of this course, students are able to:

- CO-1: Exhibit amplified level of confidence to express themselves in English
- CO 2: Critical awareness of the importance of teamwork and development of the skills for building effective teams
- CO-3: Solve the questions under reading comprehension confidently with higher accuracy
- CO 4: Solve the problems based on interest, ratio & proportion, time & work
- CO 5: Solve logical reasoning problems based on direction sense, coding & decoding and series

### **Text Book(s):**

- 1. Word Power Made Easy New Revised and Expanded Edition, First Edition, Norman Lewis, Goyal Publisher.
- 2. Essential English Grammar by Raymond Murphy, Cambridge University Press, new edition
- 3. The 7 habits of Highly Effective People by Stephen R. Covey
- 4. Quantitative aptitude by Dr. R. S Agarwal, published by S.Chand private limited.
- 5. Verbal reasoning by Dr. R. S Agarwal, published by S. Chand private limited.

### **Reference Book(s):**

- 1. Quantitative Aptitude by Arun Sharma, McGraw Hill Education Pvt Ltd
- 2. CAT Mathematics by Abhijith Guha, PHI learning private limited.

#### Web and Video link(s):

1. Teamwork Skills: Communicating Effectively in Groups https://www.coursera.org/learn/teamwork-skills-effective-communication

	COURSE ARTICULATION MATRIX [Employability Enhancement Skills (EES) - II]											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	-	-	-	-	-	-	-	-	2	3	-	2
CO-2	-	-	-	-	-	-	-	-	3	1	2	2
CO-3	-	-	-	-	-	-	-	-	-	2	-	1
CO-4	2	-	-	-	-	-	-	-	-	-	-	-
CO-5	2	-	-	-	-	-	-	-	-	-	-	-





**Department of Computer Science & Engineering** 

### BE – III / IV Semester – Common to all

	ಸಾಂಸ್ಕೃತಿಕ	ಕನ್ನಡ	
ವಿಷಯ ಸಂಕೇತ (Course Code)	P21KSK307/407	ನಿರಂತರ ಆಂತರಿಕ ಮೌಲ್ಯಮಾಪನ ಅಂಕಗಳು	50
ಒಂದು ವಾರಕ್ಕೆ ಬೋಧನಾ ಅವಧಿ Teachin Hours / Week (L:T:P)	0-2-0	ಸೆಮಿಸ್ಟರ್ ಅಂತ್ಯದ ಪರೀಕ್ಷೆಯ ಅಂಕಗಳು	50
ಒಟ್ಟು ಬೋಧನ ಅವಧಿ	25 ಗಂಟೆಗಳು	ಒಟ್ಟು ಅಂಕಗಳು	100
ಕ್ರೆಡಿಟ್ಸ್ (Credits)	1	ಪರೀಕ್ಷೆಯ ಅವಧಿ	01 ಗಂಟೆ

### ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಪಠ್ಯದ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು:

- ೧. ವೃತ್ತಿಪರ ಪದವಿ ವಿದ್ಯಾರ್ಥಿಗಳಾಗಿರುವುದರಿಂದ ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಕನ್ನಡದ ಸಾಂಸ್ಕೃತಿಯ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.
- ೨. ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಪ್ರಧಾನ ಭಾಗವಾದ ಆಧುನಿಕ ಪೂರ್ವ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳನ್ನು ಸಾಂಕೇತಿಕವಾಗಿ ಪರಿಚಹಯಿಸಿ ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಸಾಹಿತ್ಯ ಮತ್ತು ಸಾಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಅರಿವು ಹಾಗೂ ಆಸಕ್ತಿಯನ್ನು ಮೂಡಿಸುವುದು.
- ೩. ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯವನ್ನು ಹಾಗೂ ಅವರುಗಳ ಸಾಧಿಸಿದ ವಿಷಯಗಳನ್ನು ಪರಿಚಯಿಸುವುದು
- ೪. ಕನ್ನಡ ಶಬ್ದಸಂಪತ್ತಿನ ಪರಿಚಯ ಮತ್ತು ಕನ್ನಡ ಭಾಷಿಯ ಬಳಕಿ ಹಾಗೂ ಕನ್ನಡದಲ್ಲಿ ಪತ್ರ ವ್ಯವಹಾರವನ್ನು ತಿಳಿಸಿಕೊಡುವುದು.

### ಬೋಧನೆ ಮತ್ತು ಕಲಿಕಾ ವ್ಯವಸ್ಥೆ (Teaching-Learning Process – General Instructions):

These are sample Strategies, which teacher can use to accelerate the attainment of the course outcomes.

- ೧. ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡವನ್ನು ಬೋಧಿಸಲು ತರಗತಿಯಲ್ಲಿ ಶಿಕ್ಷಕರು ಪ್ರಸ್ತುತ ಮಸ್ತಕ ಆಧಾರಿಸಿ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನವನ್ನು ಅನುಸರಿಸುವುದು. ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ಗಳನ್ನು ತಯಾರಿಸಲು ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ಪ್ರೇರೇಪಿಸುವುದು ಮತ್ತು ತರಗತಿಯಲ್ಲಿ ಅವುಗಳನ್ನು ಚರ್ಚಿಸಲು ಅವಕಾಶ ಮಾಡಿಕೊಡುವುದು.
- ೨. ಇತ್ರೀಚಿನ ತಂತ್ರಜ್ಞಾನದ ಅನುಕೂಲಗಳನ್ನು ಬಳಸಿಕೊಳ್ಳುವುದು ಅಂದರೆ ಕವಿ–ಕಾವ್ಯ ಪರಿಚಯದಲ್ಲಿ ಕವಿಗಳ ಚಿತ್ರಣ ಮತ್ತು ಲೇಖನಗಳು ಮತ್ತು ಕಥೆ ಕಾವ್ಯಗಳ ಮೂಲ ಅಂಶಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟ ಧ್ವನಿ ಚಿತ್ರಗಳು, ಸಂಭಾಷಣೆಗಳು, ಈಗಾಗಲೇ ಇತರ ವಿಮರ್ಶಕರು ಬರೆದಿರುವ ವಿಮರ್ಶಾತ್ಮಕ ವಿಷಯಗಳನ್ನು ಟಿಪಿಟಿ, ಡಿಜಿಟಲ್ ಮಾಧ್ಯಮಗಳ ಮುಖಾಂತರ ವಿಶ್ಲೇಷಿಸುವುದು.
- ೩. ನವೀನ ಮಾದರಿಯ ಸಾಹಿತ್ಯ ಬೋಧನೆಗೆ ಸಂಬಂಧಪಟ್ಟ ವಿಧಾನಗಳನ್ನು ಶಿಕ್ಷಕರು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಅನುಕೂಲವಾಗುವ ರೀತಿಯಲ್ಲಿ ಅಳವಡಿಸಿಕೊಳ್ಳಬಹುದು.

### ಘಟಕ – ೧ ಲೇಖನಗಳು

- ೧. ಕರ್ನಾಟಕ ಸಂಸ್ಕೃತಿ ಹಂಪ ನಾಗರಾಜಯ್ಯ
- ೨. ಕರ್ನಾಟಕದ ಏಕೀಕರಣ : ಒಂದು ಅಪೂರ್ವ ಚರಿತ್ರೆ ಜಿ. ವೆಂಕಟಸುಬ್ಬಯ್ಯ
- ೩. ಆಡಳಿತ ಭಾಷೆಯಾಗಿ ಕನ್ನಡ ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ ಮತ್ತು ಪ್ರೋ. ವಿ. ಕೇಶವಮೂರ್ತಿ

ಬೋಧನೆ ಮತ್ತು ಮಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನ, ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ಗಳನ್ನು ಬಳಸುವುದು, ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಕಲಿಕಾ ವಿಧಾನ ಮಾಧ್ಯಮದ ವಿಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು, ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ ಮುಖಾಂತರ ಚರ್ಚಿಸುವುದು.





### **Department of Computer Science & Engineering**

### ಘಟಕ – ೨ ಆಧುನಿಕ ಪೂರ್ವದ ಕಾವ್ಯ ಭಾಗ

- ೧. ವಚನಗಳು: ಬಸವಣ್ಣ, ಅಕ್ಕಮಹದೇವಿ, ಅಲ್ಲಮಪ್ರಭು, ಆಯ್ದಕ್ಕಿ ಮಾರಯ್ಯ, ಜೇಡರದಾಸಿಮಯ್ಯ, ಆಯ್ದಕ್ಕಿ ಲಕ್ಕಮ್ಮ.
- ೨. ಕೀರ್ತನೆಗಳು: ಅದರಿಂದೇನು ಫಲ ಇದರಿಂದೇನು ಫಲ ಮರಂದರದಾಸರು ತಲ್ಲಣಿಸದಿರು ಕಂಡ್ಯ ತಾಳು ಮನವೇ – ಕನಕದಾಸರು
- ೩. ತತ್ರಪದಗಳು: ಸಾವಿರ ಕೊಡಗಳ ಸುಟ್ಟು ಶಿಶುನಾಳ ಶರೀಫ

ಬೋಧನೆ ಮತ್ತು ಮಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನ, ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ಗಳನ್ನು ಬಳಸುವುದು, ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಕಲಿಕಾ ವಿಧಾನ ಮಾಧ್ಯಮದ ವಿಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು, ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ ಮುಖಾಂತರ ಚರ್ಚಿಸುವುದು.

### ಘಟಕ – ೩ ಆಧುನಿಕ ಕಾವ್ಯಭಾಗ

- ೧. ಡಿವಿಜಿ ರವರ ಮಂಕುತಿಮ್ಮನ ಕಗ್ಗದಿಂದ ಆಯ್ದ ಕೆಲವು ಭಾಗಗಳು
- ೨. ಕುರುಡು ಕಾಂಚಾಣ: ದಾ.ರಾ. ಬೇಂದ್ರೆ
- ೩. ಹೊಸಬಾಳಿನ ಗೀತೆ: ಕುವೆಂಪು

ಕಲಿಕಾ ವಿಧಾನ

ಬೋಧನೆ ಮತ್ತು ಮಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನ, ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ಗಳನ್ನು ಬಳಸುವುದು, ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಮಾಧ್ಯಮದ ವಿಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು, ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ ಮುಖಾಂತರ ಚರ್ಚಿಸುವುದು.

### ಘಟಕ – ೪ ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯ

- ೧. ಡಾ. ಸರ್. ಎಂ. ವಿಶ್ವೇಶ್ವರಯ್ಯ: ವ್ಯಕ್ತಿ ಮತ್ತು ಐತಿಹ್ಯ ಎ ಎನ್ ಮೂರ್ತಿರಾವ್
- ೨. ಕರಕುಶಲ ಕಲೆಗಳು ಮತ್ತು ಪರಂಪರೆಯ ವಿಜ್ಞಾನ: ಕರೀಗೌಡ ಬೀಚನಹಳ್ಳಿ

ಕಲಿಕಾ ವಿಧಾನ

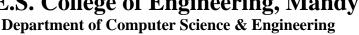
ಬೋಧನೆ ಮತ್ತು |ಮಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನ, ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ಗಳನ್ನು ಬಳಸುವುದು, ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಮಾಧ್ಯಮದ ವಿಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು, ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ ಮುಖಾಂತರ ಚರ್ಚಿಸುವುದು.

### ಘಟಕ – ೫ ಕಥೆ ಮತ್ತು ಪ್ರವಾಸ ಕಥನ

- ೧. ಯುಗಾದಿ: ವಸುಧೇಂದ್ರ
- ೨. ಮೆಗಾನೆ ಎಂಬ ಗಿರಿಜನ ಪರ್ವತ: ಹಿ.ಚಿ. ಬೋರಲಿಂಗಯ್ಯ

ಬೋಧನೆ ಮತ್ತು ಮಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನ, ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ಗಳನ್ನು ಬಳಸುವುದು, ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಕಲಿಕಾ ವಿಧಾನ ಮಾಧ್ಯಮದ ವಿಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು, ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ ಮುಖಾಂತರ ಚರ್ಚಿಸುವುದು.

### ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಕಲಿಕೆಯಿಂದ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಆಗುವ ಪರಿಣಾಮಗಳು (Course Outcomes)


- ೧. ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಕನ್ನಡದ ಸಂಸ್ಕೃತಿಯ ಪರಿಚಯವಾಗುತ್ತದೆ.
- ೨. ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಆಧುನಿಕ ಪೂರ್ವ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳು ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಆಸಕ್ತಿಯು ಮೂಡುತ್ತದೆ.
- ೩. ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯವಾಗುತ್ತದೆ.
- ೪. ಕನ್ನಡ ಭಾಷಾಭ್ಯಾಸ, ಸಾಮಾನ್ಯ ಕನ್ನಡ ಹಾಗೂ ಆಡಳಿತ ಕನ್ನಡದ ಪದಗಳ ಪರಿಚಯವಾಗುತ್ತದೆ.

### ಮೌಲ್ಯಮಾಪನದ ವಿಧಾನ (Assessment Details – both CIE and SEE)

(methods of CIE – MCQ, Quizzes, Open book test, Seminar or micro project)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The student has to obtain a minimum of 40% marks individually both in CIE and 35% marks in SEE to pass. Theory Semester End Exam (SEE) is conducted for 50 marks (01 hour duration). Based on this grading will be awarded.







### **Continuous Internal Evaluation:**

Two Tests each of 40 Marks (duration 01 hour)

Two assignments each of 10 Marks

CIE methods / question paper is designed to attain the different levels of Blomm's taxonomy as Per the outcome defined for the course.

ಸೆಮಿಸ್ಟರ್ ಅಂತ್ಯದ ಪರೀಕ್ಷೆಯು ಈ ಕೆಳಗಿನಂತಿರುತ್ತದೆ – Semester end Exam

SEE will be conducted as per the scheduled timetable, with common question papers for the subject,

- 1. The question paper will have 25 questions. Each question is set for 02 marks.
- 2. SEE Pattern will be in MCQ Model for 50 marks. Duration of the exam is 01 hour.

ಪಠ್ಯ ಮಸ್ತಕ:

ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ

ಡಾ. ಹಿ.ಚಿ. ಬೋರಲಿಂಗಯ್ಯ ಮತ್ತು ಎಲ್. ತಿಮ್ಮೇಶ, ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ





**Department of Computer Science & Engineering** 

### BE - III / IV Semester - Common to all

ಬಳಕೆ ಕನ್ನಡ – Balake Kannada (Kannada for Usage)								
ಕನ್ನಡ ಕಲಿಕೆಗಾಗಿ ನಿಗದಿಪಡಿಸಿದ ಪಠ್ಯಮಸ್ತಕ – (Prescribed Textbook to Learn Kannada)								
ವಿಷಯ ಸಂಕೇತ (Course Code)	P21KBK307/407	ನಿರಂತರ ಆಂತರಿಕ ಮೌಲ್ಯಮಾಪನ ಅಂಕಗಳು	50					
ಒಂದು ವಾರಕ್ಕೆ ಬೋಧನಾ ಅವಧಿ	0-2-0	ಸೆಮಿಸ್ಟರ್ ಅಂತ್ಯದ ಪರೀಕ್ಷೆಯ ಅಂಕಗಳು	50					
Teachin Hours / Week (L:T:P)		w 5 m						
ಒಟ್ಟು ಬೋಧನ ಅವಧಿ	25 ಗಂಟೆಗಳು	ಒಟ್ಟು ಅಂಕಗಳು	100					
ಕ್ರೆಡಿಟ್ಸ್ (Credits)	1	ಪರೀಕ್ಷೆಯ ಅವಧಿ	01 ಗಂಟೆ					

### ಬಳಕೆ ಕನ್ನಡ ಪಠ್ಯದ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು (Course Learning Objectives):

- To create the awareness regarding the necessity of learning local language for comfortable and healthy life.
- To enable learners to Listen and understand the Kannada language properly.
- To speak, read and write Kannada language as per requirement.
- To rain the learners for correct and polite conservation.

### ಬೋಧನೆ ಮತ್ತು ಕಲಿಕಾ ವ್ಯವಸ್ಥೆ (Teaching-Learning Process – General Instructions):

These are sample Strategies, which teacher can use to accelerate the attainment of the course outcomes.

- ೧. ಬಳಕೆ ಕನ್ನಡವನ್ನು ತರಗತೆಯಲ್ಲಿ ಶಿಕ್ಷಕರು ಬೋಧಿಸಲು ವಟಿಯು ಸೂಚಿಸಿರು ಪಠ್ಯಮಸ್ತಕವನ್ನು ಉಪಯೊಗಿಸಬೇಕು.
- ೨. ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ ಗಳನ್ನು ತಯಾರಿಸಲು ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ಉತ್ತೇಜಿಸುವುದು ಮತ್ತು ತರಗತಿಯಲ್ಲಿ ಅವುಗಳನ್ನು ಚರ್ಚಿಸಲು ಅವಕಾಶ ಮಾಡಿಕೊಡುವುದು.
- ೩. ಪ್ರತಿ ವಿದ್ಯಾರ್ಥಿ ಮಸ್ತಕವನ್ನು ತರಗತಿಯಲ್ಲಿ ಬಳಸುವಂತೆ ನೋಡಿಕೊಳ್ಳುವುದು ಮತ್ತು ಪ್ರತೆ ಪಾಠ ಮತ್ತು ಪ್ರವಚನಗಳ ಮೂಲ ಅಂಶಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟಂತೆ ಪೂರಕ ಚಟುವಟಿಕೆಗಳಿಗೆ ತೊಡಗಿಸತಕ್ತದ್ದು.
- ೪. ಡಿಜಿಟಲ್ ತಂತ್ರಜ್ಞಾನದ ಮುಖಾಂತರ ಇತ್ತೀಚೆಗೆ ಡಿಜಿಟಲೀಕರಣಗೊಂಡಿರುವ ಭಾಷೆ ಕಲಿಕೆಯ ವಿಧಾನಗಳನ್ನು ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಮಾಧ್ಯಮದ ಮುಖಾಂತರ ಚರ್ಚಿಸಲು ಕ್ರಮಕೈಗೊಳ್ಳುವುದು. ಇದರಿಂದ ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ತರಗತಿಯಲ್ಲಿ ಹೆಚ್ಚು ಏಕಾಗ್ರತೆಯಿಂದ ಪಾಠ ಕೇಳಲು ಮತ್ತು ಅಧ್ಯಯನದಲ್ಲಿ ತೊಡಗಲು ಅನುಕೂಲವಾಗುತ್ತದೆ.
- ೫. ಭಾಷಾಕಲಿಕೆಯ ಪ್ರಯೋಗಾಲಯದ ಮುಖಾಂತರ ಬಹುಬೇಗ ಕನ್ನಡ ಭಾಷೆಯನ್ನು ಕಲಿಯಲು ಅನುಕೂಲವಾಗುವಂತೆ ಕಾರ್ಯಚಟುವಟಿಕೆಗಳನ್ನು ಮತ್ತು ಕ್ರಿಯಾ ಯೋಜನೆಗಳನ್ನು ರೂಪಿಸುವುದು.

#### Module - 1

- 1. Introduction, Necessity of learning a local language. Methods to learn the Kannada language.
- 2. Easy learning of a Kannada Language: A few tips. Hints for correct and polite conservation, Listening and Speaking Activites
- 3. Key to Transcription.
- 4. ವೈಯಕ್ತಿಕ, ಸ್ವಾಮ್ಯಸೂಚಕ / ಸಂಬಂಧಿತ ಸಾರ್ವನಾಮಗಳು ಮತ್ತು ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು —Personal Pronouns, Possessive Forms, Interrogative words

ಬೋಧನೆ ಮತ್ತು ಮಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನ, ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ಗಳನ್ನು ಬಳಸುವುದು, ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಕಲಿಕಾ ವಿಧಾನ ಮಾಧ್ಯಮದ ವಿಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು, ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ ಮುಖಾಂತರ ಚರ್ಚಿಸುವುದು.





**Department of Computer Science & Engineering** 

#### Module - 2

- ೧. ನಾಮಪದಗಳ ಸಂಬಂಧಾರ್ಥಕ ರೂಪಗಳು, ಸಂದೇಹಾಸ್ಪದ ಪ್ರಶ್ನೆಗಳು ಮತ್ತು ಸಂಬಂಧವಾಚಕ ನಾಮಪದಗಳು Possessive forms of nouns, dubitive question and Relative nouns
- ೨. ಗುಣ, ಪರಿಮಾಣ ಮತ್ತು ವರ್ಣಬಣ್ಣ ವಿಶೇಷಣಗಳು, ಸಂಖ್ಯಾವಾಚಕಗಳು Qualitative and Colour Adjectives, Numerals
- ನಿ. ಕಾರಕ ರೂಪಗಳು ಮತ್ತು ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಗಳು ಸಪ್ತಮಿ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯ (ಆ, ಅದು, ಅವು, ಅಲ್ಲಿ) Predictive Forms, Locative Case

ಬೋಧನೆ ಮತ್ತು ಕಲಿಕಾ ವಿಧಾನ ಪುಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನ, ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ಗಳನ್ನು ಬಳಸುವುದು, ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಮಾಧ್ಯಮದ ವಿಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು, ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ ಮುಖಾಂತರ ಚರ್ಚಿಸುವುದು.

#### Module - 3

- ೧. ಚತುರ್ಥಿ ವಿಭಕ್ತಿ ಪ್ರತ್ನಯದ ಬಳಕೆ ಮತ್ತು ಸಂಖ್ಯಾವಾಚಕಗಳು Dative Cases, and Numerals
- ೨. ಸಂಖ್ಯಾಗುಣವಾಚಕಗಳು ಮತ್ತು ಬಹುವಚನ ನಾಮರೂಪಗಳು Ordinal numerals and Plural markers
- ನ್ಯಿನ / ನಿಷೇಧಾರ್ಥಕ ಕ್ರಿಯಾಪದಗಳು ಮತ್ತು ವರ್ಣ ಗುಣವಾಚಕಗಳು Defective / Negative Verbs and Colour Adjectives

ಬೋಧನೆ ಮತ್ತು ಮಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನ, ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ಗಳನ್ನು ಬಳಸುವುದು, ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಕಲಿಕಾ ವಿಧಾನ | ಮಾಧ್ಯಮದ ವಿಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು, ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ ಮುಖಾಂತರ ಚರ್ಚಿಸುವುದು.

#### Module - 4

- ೧. ಅಪ್ಪಣೆ / ಒಪ್ಪಿಗೆ, ನಿರ್ದೇಶನ, ಪ್ರೋತ್ಸಾಹ ಮತ್ತು ಒತ್ತಾಯ ಅರ್ಥರೂಪ ಪದಗಳು ಮತ್ತು ವಾಕ್ಯಗಳು
  - Permission, Commands, encouraging and Urging words (Imperative words and sentences)
- ೨. ಸಾಮಾನ್ಯ ಸಂಭಾಷಣೆಗಳಲ್ಲಿ ದ್ವಿತೀಯ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಗಳು ಮತ್ತು ಸಂಭವನೀಯ ಪ್ರಕಾರಗಳು

### Accusative Cases and Potential Forms used in General Communication

- ೩. "ಇರು ಮತ್ತು ಇರಲ್ಲ" ಸಹಾಯಕ ಕ್ರಿಯಾಪದಗಳು, ಸಂಭಾವ್ಯಸೂಚಕ ಮತ್ತು ನಿಷೇಧಾರ್ಥಕ ಕ್ರಿಯಾ ಪದಗಳು Helping Verbs "iru and iralla", Corresponding Future and Negation Verbs
- ೪. ಹೋಲಿಕೆ (ತರತಮ), ಸಂಬಂಧ ಸೂಚಕ ಮತ್ತು ವಸ್ತು ಸೂಚಕ ಪ್ರತ್ಯಯಗಳು ಮತ್ತು ನಿಷೇಧಾರ್ಥಕ ಪದಗಳ ಬಳಕೆ Comparative, Relationship, Identification and Negation Words

ಬೋಧನೆ ಮತ್ತು ಮಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನ, ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ ಗಳನ್ನು ಬಳಸುವುದು, ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಕಲಿಕಾ ವಿಧಾನ ಮಾಧ್ಯಮದ ವಿಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು, ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ ಮುಖಾಂತರ ಚರ್ಚಿಸುವುದು.

#### Module - 5

- ೧. ಕಾಲ ಮತ್ತು ಸಮಯದ ಹಾಗೂ ಕ್ರಿಯಾಪದಗಳ ವಿವಿಧ ಪ್ರಕಾರಗಳು ifferint types of forms of Tense, Time and Verbs
- ೨. ದ್, –ತ್, –ತು, –ಇತು, –ಆಗಿ, –ಅಲ್ಲ, –ಗ್, –ಕ್, ಇದೆ, ಕ್ರಿಯಾ ಪ್ರತ್ಯಯಗಳೊಂದಿ ಭೂತ, ಭವಿಷ್ಯತ್ ಮತ್ತು ವರ್ತಮಾನ ಕಾಲ ವಾಕ್ಯ ರಚನೆ Formation of past, Future and Present Tense Sentences with Verb Forms
- ೩. Kannada Vocabulary List : ಸಂಭಾಷಣೆಯಲ್ಲಿ ದಿನೋಪಯೋಗಿ ಕನ್ನಡ ಪದಗಳು Kannada Words in Conversation

ಬೋಧನೆ ಮತ್ತು ಮಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನ, ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ಗಳನ್ನು ಬಳಸುವುದು, ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಕಲಿಕಾ ವಿಧಾನ ಮಾಧ್ಯಮದ ವಿಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು, ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ ಮುಖಾಂತರ ಚರ್ಚಿಸುವುದು.





### **Department of Computer Science & Engineering**

ಬಳಕೆ ಕನ್ನಡ ಪಠ್ಯದ ಕಲಿಕೆಯಿಂದ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಆಗುವ ಅನುಕೂಲಗಳು ಮತ್ತು ಫಲಿತಾಂಶಗಳು :

Course Outcomes (Course Skill Set): At the end of the Couse, The Students will be able

- 1. To understand the necessity of learning of local language for comfortable life.
- 2. To Listen and understand the Kannada language properly.
- 3. To speak, read and write Kannada language as per requirement.
- 4. To communicate (converse) in Kannada language in their daily life with kannada speakers.
- 5. To speak in polite conservation.

### (Assessment Details – both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and aearned the credits allotted to each subject / course if the student secures not less than 35% (18 Marks out of 50) in the semester – end examination (SEE), and a minimum of 40% (40 maeks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

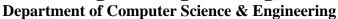
#### **Continuous Internal Evaluation:**

Two Tests each of **40 Marks (duration 01 hour)**Two assignments each of **10 Marks** 

CIE methods / question paper is designed to attain the different levels of Blomm's taxonomy as per the outcome defined for the course.

ಸೆಮಿಸ್ಟರ್ ಅಂತ್ಯದ ಪರೀಕ್ಷೆಯು ಈ ಕೆಳಗಿನಂತಿರುತ್ತದೆ – Semester end Exam (SEE)

SEE will be conducted as per the scheduled timetable, with common question papers for the subject,


- 1. The question paper will have 25 questions. Each question is set for 02 marks.
- 2. SEE Pattern will be in MCQ Model for 50 marks. Duration of the exam is 01 hour.

### ಪಠ್ಯ ಮಸ್ತಕ (Text book) : ಬಳಕೆ ಕನ್ನಡ

ಲೇಖಕರು: ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ,

ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ







### BE – III / IV Semester – Common to all

Constitution of India and Professional Ethics (CIP)							
Course Code	P21CIP307/407	CIE Marks	50				
Teachin Hours / Week (L:T:P)	0-2-0	SEE Marks	50				
Total Hours of Pedagogy	25 Hours	Total Marks	100				
Credits	1	Exam Hours	01 Hour				

Course Objectives: This course will enable the students

- a. To know the fundamental political structure & codes, procedures, powers, and duties of Indian government institutions, fundamental rights, directive principles, and the duties of citizens.
- b. To understand engineering ethics and their responsibilities, identify their individual roles and ethical responsibilities towards society.

### **Teaching-Learning Process (General Instructions)**

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- ✓ Teachers shall adopt suitable pedagogy for effective teaching learning process. The pedagogy shall involve the combination of different methodologies which suit modern technological tools and software's to meet the present requirements of the Global employment market.
  - (i) Direct instructional method ( Low /Old Technology),
  - (ii) Flipped classrooms (High/advanced Technological tools),
  - (iii) Blended learning (combination of both),
  - (iv) Enquiry and evaluation based learning,
  - (v) Personalized learning,
  - (vi) Problems based learning through discussion,
  - (vii) Following the method of expeditionary learning Tools and techniques,
- **1.** Apart from conventional lecture methods, various types of innovative teaching techniques through videos, animation films may be adapted so that the delivered lesson can enhance the students in theoretical applied and practical skills in teaching of 21CIP39/49 in general.

### Module - 1

**Introduction to Indian Constitution:** Definition of Constitution, Necessity of the Constitution, Societies before and after the Constitution adoption. Introduction to the Indian constitution, Making of the Constitution, Role of the Constituent Assembly. Preamble of Indian Constitution & Key concepts of the Preamble. Salient features of India Constitution.

<b>Teaching-</b>	Chalk and talk method, Videos, Power Point presentation to teach. Creating real
Learning	time stations in classroom discussions, Giving activities and assignments
Process	(Connecting Campus & community withadministration real time situations).





Department of Computer Science & Engineering

A Table Company Company		
Module - 2		
Fundamental Rights (FR's), Directive Principles of State Policy (DPSP's) and Fundamental Duties (FD's): Fundamental Rights and its Restriction and limitations in different Complex Situations. DPSP's and its present relevance in Indian society. Fundamental Duties and its Scope and significance inNation building.		
Teaching- Learning Process	Chalk and talk method, Videos, Power Point presentation to teach. Creating real time stations in classroom discussions, Giving activities and assignments (Connecting Campus & community withadministration real time situations).	
	Module - 3	
Cabinet, Parlia	ive: Parliamentary System, Union Executive – President, Prime Minister, Union ament - LS and RS, Parliamentary Committees, Important Parliamentary . Supreme Courtof India, Judicial Reviews and Judicial Activism.	
Teaching- Learning Process	Chalk and talk method, Videos, Power Point presentation to teach. Creating real time stations in classroom discussions, Giving activities and assignments (Connecting Campus & community withadministration real time situations).	
	Module - 4	
Commission, I	<b>ve &amp; Elections, Amendments and Emergency Provisions:</b> State Executive, Election Elections & Electoral Process. Amendment to Constitution (Why and How) and stitutional Amendments till today. Emergency Provisions.	
Teaching- Learning Process	Chalk and talk method, Videos, Power Point presentation to teach. Creating real time stations in classroom discussions, Giving activities and assignments (Connecting Campus & community withadministration real time situations).  Module - 5	
Negative aspeto Responsibilication Responsibilication Reliability in Exercises.	Ethics: Definition of Ethics & Values. Professional & Engineering Ethics. Positive and cts of Engineering Ethics. Clash of Ethics, Conflicts of Interest. The impediments ity. Professional Risks, Professional Safety and liability in Engineering. Trust & Engineering, Intellectual Property Rights (IPR's).	
Teaching-	Chalk and talk method, Videos, Power Point presentation to teach. Creating real	

TeachingChalk and talk method, Videos, Power Point presentation to teach. Creating real time stations in classroom discussions, Giving activities and assignments

**Process** (Connecting Campus & community with administration real time situations).





### **Department of Computer Science & Engineering**

### Course outcome (Course Skill Set)

At the end of the course the student should:

CO 1: Have constitutional knowledge and legal literacy.

CO 2: Understand Engineering and Professional ethics and responsibilities of Engineers.

### **Assessment Details (both CIE and SEE)**

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks that is 20 marks. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50)in the semesterend examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE and SEE taken together

#### **Continuous Internal Evaluation:**

Two Tests each of 40 Marks (duration 01 hour)

Two assignments each of 10 Marks

The average of two tests, two assignments, and quiz/seminar/group discussion will be out of 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

#### **Semester End Examination:**

SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject.

- The question paper will have 25 questions. Each question is set for 02 marks.
- SEE Pattern will be in MCQ Model (Multiple Choice Questions) for 50 marks. Duration of the examination is 01 Hour.

### Textbook:

1. **"Constitution of India & Professional Ethics"** Published by Prasaranga or published on VTU website with the consent of the university authorities VTU Belagavi.